ترغب بنشر مسار تعليمي؟ اضغط هنا

The MaGICC Baryon Cycle: The Enrichment History of Simulated Disc Galaxies

174   0   0.0 ( 0 )
 نشر من قبل Chris Brook Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using cosmological galaxy formation simulations from the MaGICC project, spanning more than three magnitudes in stellar mass (~10^7-3x10^{10} Msun), we trace the baryonic cycle of infalling gas from the virial radius through to its participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and CGM. We derive the distributions of time between gas crossing the virial radius and being accreted to the star forming region (which allows mixing within the corona), as well as the time between gas being accreted to the star forming region and then forming stars (which allows mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star forming region. Gas entering high mass galaxies is pre-enriched in low mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z~5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star forming region, with gas that is feeding the star forming region surpassing 0.1Z by z=0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulation (Mvir~2x10^{10}Msun, with M*~10^7Msun), by contrast, accretes primordial gas through the virial radius and onto the disc at all times. Much like the classical analytical solutions to the `G-dwarf problem, overproduction of low-metallicity stars is ameliorated by the inefficiency of star formation. Finally, gas outflow/metal removal rates from star forming regions as a function of galactic mass are presented.



قيم البحث

اقرأ أيضاً

We explore the chemical distribution of stars in a simulated galaxy. Using simulations of the same initial conditions but with two different feedback schemes (MUGS and MaGICC), we examine the features of the age-metallicity relation (AMR), and the th ree-dimensional age-metallicity-[O/Fe] distribution, both for the galaxy as a whole and decomposed into disc, bulge, halo, and satellites. The MUGS simulation, which uses traditional supernova feedback, is replete with chemical substructure. This sub- structure is absent from the MaGICC simulation, which includes early feedback from stellar winds, a modified IMF and more efficient feedback. The reduced amount of substructure is due to the almost complete lack of satellites in MaGICC. We identify a significant separation between the bulge and disc AMRs, where the bulge is considerably more metal-rich with a smaller spread in metallicity at any given time than the disc. Our results suggest, however, that identifying the substructure in observations will require exquisite age resolution, on the order of 0.25 Gyr. Certain satellites show exotic features in the AMR, even forming a sawtooth shape of increasing metallicity followed by sharp declines which correspond to pericentric passages. This fact, along with the large spread in stellar age at a given metallicity, compromises the use of metallicity as an age indicator, although alpha abundance provides a more robust clock at early times. This may also impact algorithms that are used to reconstruct star formation histories from resolved stellar populations, which frequently assume a monotonically-increasing AMR.
We present the first results of a pilot study aimed at understanding the influence of bars on the evolution of galaxy discs through the study of their stellar content. We examine here the kinematics, star formation history, mass-weighted, luminosity- weighted, and single stellar population (SSP) equivalent ages and metallicities for four galaxies ranging from lenticulars to late-type spirals. The data employed extends to 2-3 disc scalelengths, with S/N(A)>50. Several techniques are explored to derive star formation histories and SSP-equivalent parameters, each of which are shown to be compatible. We demostrate that the age-metallicity degeneracy is highly reduced by using spectral fitting techniques --instead of indices-- to derive these parameters. We found that the majority of the stellar mass in our sample is composed of old (~10 Gyr) stars. This is true in the bulge and the disc region, even beyond two disc scalelengths. In the bulge region, we find that the young, dynamically cold, structures produced by the presence of the bar (e.g., nuclear discs or rings) are responsible for shaping the bulges age and metallicity gradients. In the disc region, a larger fraction of young stars is present in the external parts of the disc compared with the inner disc. The disc growth is, therefore, compatible with a moderate inside-out formation scenario, where the luminosity weighted age changes from ~10 Gyrs in the centre, to ~4 Gyrs at two disc scalelengths, depending upon the galaxy. For two galaxies, we compare the metallicity and age gradients of the disc major axis with that of the bar, finding very important differences. In particular, the stellar population of the bar is more similar to the bulge than to the disc, indicating that, at least in those two galaxies, bars formed long ago and have survived to the present day. (abridged)
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp onents of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
118 - Jakob Herpich 2013
We study the effect of warm dark matter (WDM) on hydrodynamic simulations of galaxy formation as part of the Making Galaxies in a Cosmological Context (MaGICC) project. We simulate three different galaxies using three WDM candidates of 1, 2 and 5 keV and compare results with pure cold dark matter simulations. WDM slightly reduces star formation and produces less centrally concentrated stellar profiles. These effects are most evident for the 1 keV candidate but almost disappear for $m_{mathrm{WDM}}>2$ keV. All simulations form similar stellar discs independent of WDM particle mass. In particular, the disc scale length does not change when WDM is considered. The reduced amount of star formation in the case of 1 keV particles is due to the effects of WDM on merging satellites which are on average less concentrated and less gas rich. The altered satellites cause a reduced starburst during mergers because they trigger weaker disc instabilities in the main galaxy. Nevertheless we show that disc galaxy evolution is much more sensitive to stellar feedback than it is to WDM candidate mass. Overall we find that WDM, especially when restricted to current observational constraints ($m_{mathrm{WDM}}>2$ keV), has a minor impact on disc galaxy formation.
We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on th e merger history at low redshift, with even 1:10 - 1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are on the order of 30%). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ~0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in velocity dispersion is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا