ترغب بنشر مسار تعليمي؟ اضغط هنا

The real photon structure functions in massive parton model in NLO

115   0   0.0 ( 0 )
 نشر من قبل Norihisa Watanabe
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the one-gluon-exchange ($alpha alpha_s$) corrections to the real photon structure functions $W_{TT} $, $W_{LT}$, $W_{TT}^{a} $ and $W_{TT}^tau$ in the massive parton model. We employ a technique based on the Cutkosky rules and the reduction of Feynman integrals to master integrals. We show that a positivity constraint, which is derived from the Cauchy-Schwarz inequality, is satisfied among the unpolarized and polarized structure functions $W_{TT}$, $W_{TT}^a$ and $W_{TT}^tau$ calculated up to the next-to-leading order in QCD.



قيم البحث

اقرأ أيضاً

We investigate the one-gluon-exchange ($alpha alpha_s$) corrections to the polarized real photon structure function $g_1^gamma(x,Q^2)$ in the massive parton model. We employ a technique based on the Cutkosky rules and the reduction of Feynman integra ls to master integrals. The NLO contribution is noticeable at large $x$ and does not vanish at the threshold of the massive quark pair production due to the Coulomb singularity. It is found that the first moment sum rule of $g_1^gamma$ is satisfied up to the NLO.
131 - G. Beuf , T. Lappi , 2021
In this work, we will present the first complete calculation of the one-loop longitudinal photon-to-quark-antiquark light cone wave function, with massive quarks. The quark masses are renormalized in the pole mass scheme. The result is used to calcul ate the next-to-leading order correction to the high energy Deep Inelastic Scattering longitudinal structure function on a dense target in the dipole factorization framework. For massless quarks the next-to-leading order correction was already known to be sizeable, and our result makes it possible to evaluate it also for massive quarks.
We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep ine lastic $ell$+A scattering, Drell-Yan dilepton production in p+$A$ collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor $R_{rm dAu}$ of the pion $p_T$-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of $chi^2$ to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.
107 - Jiri Chyla 2007
The organization of finite order QCD approximations to $F_2^{gamma}(x,Q^2)$ based on the separation of pure QED contribution from those of genuine QCD nature is discussed.
129 - L. Jonsson 2002
The structure of real and virtual photons has been studied in electron-proton scattering processes producing di-jet events at HERA by the H1 and ZEUS collaborations. Data have been compared to next-to-leading order QCD calculations and to the predict ions of Monte Carlo generators based on the DGLAP and CCFM formalisms for describing the parton dynamics
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا