ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton Radiation Damage Experiment on P-Channel CCD for an X-ray CCD camera onboard the Astro-H satellite

151   0   0.0 ( 0 )
 نشر من قبل Koji Mori
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the Astro-H satellite. The device was exposed up to 10^9 protons cm^{-2} at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed.



قيم البحث

اقرأ أيضاً

We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure of potential for signal charges by increasing the implant concentration in the channel. The new device was exposed up to approximately $7.9 times 10^{10} mathrm{~protons~cm^{-2}}$ at 100 MeV. The charge transfer inefficiency was estimated as a function of proton fluence with an ${}^{55} mathrm{Fe}$ source. A device without the notch structure was also examined for comparison. The result shows that the notch device has a significantly higher radiation hardness than those without the notch structure including the device adopted for Hitomi. This proves that the new CCD is radiation tolerant for space applications with a sufficient margin.
NeXT (New X-ray Telescope) is the next Japanese X-ray astronomical satellite mission after the Suzaku satellite. NeXT aims to perform wide band imaging spectroscopy. Due to the successful development of a multilayer coated mirror, called a supermirro r, NeXT can focus X-rays in the energy range from 0.1 keV up to 80 keV. To cover this wide energy range, we are in the process of developing a hybrid X-ray camera, Wideband X-ray Imager (WXI) as a focal plane detector of the supermirror. The WXI consists of X-ray CCDs (SXI) and CdTe pixelized detectors (HXI), which cover the lower and higher X-ray energy bands of 0.1-80 keV, respectively. The X-ray CCDs of the SXI are stacked above the CdTe pixelized detectors of the HXI. The X-ray CCDs of the SXI detect soft X-rays below $sim$ 10 keV and allow hard X-rays pass into the CdTe detectors of the HXI without loss. Thus, we have been developing a back-supportless CCD with a thick depletion layer, a thinned silicon wafer, and a back-supportless structure. In this paper, we report the development and performances of an evaluation model of CCD for the SXI, CCD-NeXT1. We successfully fabricated two types of CCD-NeXT1, unthinned CCDs with 625-um thick wafer and 150-um thick thinned CCDs. By omitting the polishing process when making the thinned CCDs, we confirmed that the polishing process does not impact the X-ray performance. In addition, we did not find significant differences in the X-ray performance between the two types of CCDs. The energy resolution and readout noise are $sim$ 140 eV (FWHM) at 5.9 keV and $sim$5 electrons (RMS), respectively. The estimated thickness of the depletion layer is $sim$80 um. The performances almost satisfy the requirements of the baseline plan of the SXI.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sens itive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
129 - G. M. Seabroke 2009
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaias CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaias overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvacos physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the effect of different doping approximations.
158 - Yuan Tian , Zheng Wang , Jian Li 2018
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for receiving spectra. Stability and automation of the camera-cont rol software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications have concerned small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for LAMOST automatic camera control. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا