ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of spin-dependent interactions on polarisation of bright polariton solitons

192   0   0.0 ( 0 )
 نشر من قبل Dmitriy Krizhanovskii Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the spin properties of bright polariton solitons supported by an external pump to compensate losses. We observe robust circularly polarised solitons when a circularly polarised pump is applied, a result attributed to phase synchronisation between nondegenerate TE and TM polarised polariton modes at high momenta. For the case of a linearly polarised pump either s+ or s- circularly polarised bright solitons can be switched on in a controlled way by a s+ or s- writing beam respectively. This feature arises directly from the widely differing interaction strengths between co- and cross-circularly polarised polaritons. In the case of orthogonally linearly polarised pump and writing beams, the soliton emission on average is found to be unpolarised, suggesting strong spatial evolution of the soliton polarisation, a conclusion supported by polarisation correlation measurements. The observed results are in agreement with theory, which predicts stable circularly polarised solitons and unstable linearly polarised solitons resulting in spatial evolution of their polarisation.



قيم البحث

اقرأ أيضاً

We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms . We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anti-continuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, on the contrary of the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
Soliton solutions are studied for paraxial wave propagation with intensity-dependent dispersion. Although the corresponding Lagrangian density has a singularity, analytical solutions, derived by the pseudo-potential method and the corresponding phase diagram, exhibit one- and two-humped solitons with almost perfect agreement to numerical solutions. The results obtained in this work reveal a hitherto unexplored area of soliton physics associated with nonlinear corrections to wave dispersion.
Photons and excitons in a semiconductor microcavity interact to form exciton-polariton condensates. These are governed by a nonlinear quantum-mechanical system involving exciton and photon wavefunctions. We calculate all non-traveling harmonic solito n solutions for the one-dimensional lossless system. There are two frequency bands of bright solitons when the inter-exciton interactions produce an attractive nonlinearity and two frequency bands of dark solitons when the nonlinearity is repulsive. In addition, there are two frequency bands for which the exciton wavefunction is discontinuous at its symmetry point, where it undergoes a phase jump of pi. A band of continuous dark solitons merges with a band of discontinuous dark solitons, forming a larger band over which the soliton far-field amplitude varies from zero to infinity; the discontinuity is initiated when the operating frequency exceeds the free exciton frequency. The far fields of the solitons in the lowest and highest frequency bands (one discontinuous and one continuous dark) are linearly unstable, whereas the other four bands have linearly stable far fields, including the merged band of dark solitons.
We study the topological phase of bright soliton with arbitrary velocity under the self-steepening effect. Such topological phase can be described by the topological vector potential and effective magnetic field. We find that the point-like magnetic fields corresponds to the density peak of such bright solitons, where each elementary magnetic flux is {pi}. Remarkably, we show that two bright solitons can generate an additional topological field due to the phase jump between them. Our research provided the possibility to use bright solitons to explore topological properties.
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an exponential growth in time -- a signature of the transverse instability. The solitons characteristic timescale associated with its exponential growth,is found to depend on the square root of the nonlocality parameter. This, in turn, highlights the nonlocality-induced suppression of the transverse instability. Our analytical predictions are corroborated by direct numerical simulations, with the analytical results being in good agreement with the numerical ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا