ترغب بنشر مسار تعليمي؟ اضغط هنا

Life at the Interface of Particle Physics and String Theory

183   0   0.0 ( 0 )
 نشر من قبل Bert Schellekens
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف A.N. Schellekens




اسأل ChatGPT حول البحث

If the results of the first LHC run are not betraying us, many decades of particle physics are culminating in a complete and consistent theory for all non-gravitational physics: the Standard Model. But despite this monumental achievement there is a clear sense of disappointment: many questions remain unanswered. Remarkably, most unanswered questions could just be environmental, and disturbingly (to some) the existence of life may depend on that environment. Meanwhile there has been increasing evidence that the seemingly ideal candidate for answering these questions, String Theory, gives an answer few people initially expected: a huge landscape of possibilities, that can be realized in a multiverse and populated by eternal inflation. At the interface of bottom-up and top-down physics, a discussion of anthropic arguments becomes unavoidable. We review developments in this area, focusing especially on the last decade.



قيم البحث

اقرأ أيضاً

104 - Y. H. Ahn 2016
We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful bridge between flavor physics and string theory. The key feature is two anomalous gauged $U(1)$ symmetries, responsible for both the fermion mass hi erarchy problem of the standard model and the strong CP problem, that combine string theory with flavor physics and severely constrain the form of the F- and D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the size moduli with positive masses while leaving two axions massless and one axion massive. We demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic directions survive to low energies as the flavored PQ axions.
120 - William Bialek 2015
Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. Im an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.
Predictions for the scale of SUSY breaking from the string landscape go back at least a decade to the work of Denef and Douglas on the statistics of flux vacua. The assumption that an assortment of SUSY breaking F and D terms are present in the hidde n sector, and their values are uniformly distributed in the landscape of D=4, N=1 effective supergravity models, leads to the expectation that the landscape pulls towards large values of soft terms favored by a power law behavior P(m(soft))~ m(soft)^n. On the other hand, similar to Weinbergs prediction of the cosmological constant, one can assume an anthropic selection of weak scales not too far from the measured value characterized by m(W,Z,h)~ 100 GeV. Working within a fertile patch of gravity-mediated low energy effective theories where the superpotential mu term is << m(3/2), as occurs in models such as radiative breaking of Peccei-Quinn symmetry, this biases statistical distributions on the landscape by a cutoff on the parameter Delta(EW), which measures fine-tuning in the m(Z)-mu mass relation. The combined effect of statistical and anthropic pulls turns out to favor low energy phenomenology that is more or less agnostic to UV physics. While a uniform selection n=0 of soft terms produces too low a value for m(h), taking n=1 or 2 produce most probabilistically m(h)~125 GeV for negative trilinear terms. For n>=1, there is a pull towards split generations with m(squarks,sleptons)(1,2)~10-30 TeV whilst m(t1)~ 1-2 TeV. The most probable gluino mass comes in at ~ 3-4 TeV--apparently beyond the reach of HL-LHC (although the required quasi-degenerate higgsinos should still be within reach). We comment on consequences for SUSY collider and dark matter searches.
We study the graviton phenomenology of TeV Little String Theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the Standard Model fields on th e boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~ TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~ 30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions where the KK states are almost a continuum with no mass gap, and warped models where the states are separated by a TeV.
We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا