ﻻ يوجد ملخص باللغة العربية
The study of ultra-high energy cosmic rays (UHECRs) has recently experienced a jump in statistics as well as improved instrumentation. This has allowed a better sensitivity in searching for anisotropies in the arrival directions of cosmic rays. In this written version of the presentation given by the inter-collaborative Anisotropy Working Group at the International Symposium on Future Directions in UHECR physics at CERN in February 2012, we report on the current status for anisotropy searches in the arrival directions of UHECRs.
The current status of searches for ultra-high energy neutrinos and photons using air showers is reviewed. Regarding both physics and observational aspects, possible future research directions are indicated.
We present a summary of the measurements of mass sensitive parameters at the highest cosmic ray energies done by several experiments. The Xmax distribution as a function of energy has been measured with fluorescence telescopes by the HiRes, TA and Au
The IceCube, Pierre Auger and Telescope Array Collaborations have recently reported results on neutral particles (neutrons, photons and neutrinos) which complement the measurements on charged primary cosmic rays at ultra-high energy. The complementar
The FLAG working group reviews lattice results relevant for pion and kaon physics with the aim of making them easily accessible to the particle physics phenomenology community. The set of quantities considered so far comprises light quark masses, kao
We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with re