ﻻ يوجد ملخص باللغة العربية
Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper agrees with the set of experimental data on the platinum band location and the platinum particle distribution and size.
We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo (QMC) solution of the electronic part with the path integral (PI) formalism for the q
In this paper, we discuss critical aspects of the mechanisms and features of polymer proton exchange membrane (PEM) degradation in low-temperature H2/O2 fuel cell. In this paper, we focused on chemical mechanism of OH radical generation and their dis
This study focuses on comparing the individual polymer chain dynamics in an entangled polymeric liquid under different shear and extension rates. Polymer chains under various shear rates and extension rates were simulated using a stochastic-tube mode
A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling
Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehen