ترغب بنشر مسار تعليمي؟ اضغط هنا

Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

127   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.



قيم البحث

اقرأ أيضاً

Sawtooth control using steerable electron cyclotron current drive (ECCD) has been demonstrated in ASDEX Upgrade plasmas with a significant population of energetic ions in the plasma core and long uncontrolled sawtooth periods. The sawtooth period is found to be minimised when the ECCD resonance is swept to just inside the q = 1 surface. By utilising ECCD inside q = 1 for sawtooth control, it is possible to avoid the triggering of neoclassical tearing modes, even at significnatly higher pressure than anticipated in the ITER baseline scenario. Operation at 25% higher normalised pressure has been achieved when only modest ECCD power is used for sawtooth control compared to identical discharges without sawtooth control when neo-classical tearing modes are triggered by the sawteeth. Modelling suggests that the destabilisation arising from the change in the local magnetic shear caused by the ECCD is able to compete with the stabilising influence of the energetic particles inside the q = 1 surface.
The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V r /V f and SHAD systems.
Embedded RF contacts are integrated within the ITER ICRH launcher to allow assembling, sliding and to lower the thermo-mechanical stress. They have to withstand a peak RF current up to 2.5 kA at 55 MHz in steady-state conditions, in the vacuum enviro nment of themachine.The contacts have to sustain a temperature up to 250{textdegree}Cduring several days in baking operations and have to be reliable during the whole life of the launcher without degradation. The RF contacts are critical components for the launcher performance and intensive R&D is therefore required, since no RF contactshave so far been qualified at these specifications. In order to test and validate the anticipated RF contacts in operational conditions, CEA has prepared a test platform consisting of a steady-state vacuum pumped RF resonator. In collaboration with ITER Organization and the CYCLE consortium (CYclotronCLuster for Europe), an R&D program has been conducted to develop RF contacts that meet the ITER ICRH launcher specifications. A design proposed by CYCLE consortium, using brazed lamellas supported by a spring to improve thermal exchange efficiency while guaranteeing high contact force, was tested successfully in the T-resonator up to 1.7 kA during 1200 s, but failed for larger current values due to a degradation of the contacts. Details concerning the manufacturing of the brazed contacts on its titanium holder, the RF tests results performed on the resonator and the non-destructive tests analysis of the contacts are given in this paper.
Electron dynamics in Electron Cyclotron Resonance Ion Source is numerically simulated by using Particle-In-Cell code combined with simulations of the ion dynamics. Mean electron energies are found to be around 70 keV close to values that are derived from spectra of X-ray emission out of the source. Electron life time is defined by losses of low-energy electrons created in ionizing collisions; the losses are regulated by electron heating rate, which depends on magnitude of the microwave electric field. Changes in ion confinement with variations in the microwave electric field and gas flow are simulated. Influence of electron dynamics on the afterglow and two-frequency heating effects is discussed.
A new synergy mechanism between Ohkawa current drive (OKCD) of electron cyclotron (EC) waves and lower hybrid current drive (LHCD) is discovered and discussed. And the methodology to achieve this synergy effect is also introduced. Improvement of OKCD efficiency can be achieved up to a factor of ~ 2.5 in far off-axis radial region (r{ho} > 0.6) of tokamak plasmas. Making EC wave heating the electrons of co-Ip direction and LH wave heating the electrons of counter-Ip direction, the mechanism of this new synergy effect comes from the results of electron trapping and detrapping processes. The OKCD makes the low speed barely passing electrons to be trapped (trapping process), the LHCD pulls some of the high speed barely trapped electrons out of the trapped region in velocity space (detrapping process) and accelerates the detrapped electrons to a higher speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا