ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric effects and the asymmetry of the current-voltage characteristics of metallic point contacts

185   0   0.0 ( 0 )
 نشر من قبل Yu. G. Naidyuk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An asymmetry as a function of the direction of current flow is observed in the current-voltage characteristic (CVC) and its first and second derivatives for point heterocontacts between pure metals {Cu, Ni, Fe) as well as between these metals and dilute alloys (CuFe, CuMn). It is shown that the observed asymmetry is caused by thermoelectrical phenomena (Seebeck, Peltier, and Thompson effects), observed when the temperature inside the contact differs from the temperature of the bath. In the low energy range (less than or of the order of the Debye energy) the asymmetry of the CVC is affected mainly by the Seebeck effect, while at high energies and for larger contacts (lower resistance) the contributions of all noted effects are of the same order of magnitude. A technique is proposed for determining the temperature of a heterocontact by measuring the CVC in two polarities. It is established that in the intermediate (between the diffusion and ballistic) state of flight of the electrons through the constriction the temperature of the heterocontact increases linearly with the voltage on it, and all the more rapidly the larger the contact and the more impurity in it.



قيم البحث

اقرأ أيضاً

We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a t zero field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus (where shot noise vanishes), agrees quantitatively with a model of bias-dependent electron heating.
161 - T. Koch , J. Loos , 2013
We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigat e the impact of the formation of a local polaron on the thermoelectric properties of the junction. We apply a variational Lang-Firsov transformation and solve the equations of motion in the Kadanoff-Baym formalism up to second order in the dot-lead coupling parameter. We calculate the thermoelectric current and voltage for finite temperature differences in the resonant and inelastic tunneling regimes. For a near resonant dot level, the formation of a local polaron can boost the thermoelectric effect because of the Franck-Condon blockade. The line shape of the thermoelectric voltage signal becomes asymmetrical due to the varying polaronic character of the dot state and in the nonlinear transport regime, vibrational signatures arise.
234 - R. Guerrero , A. Anadon , A. Gudin 2020
Spin polarized currents are employed to efficiently manipulate the magnetization of ferromagnetic ultrathin films by exerting a torque on it. If the spin currents are generated by means of the spin-orbit interaction between a ferromagnetic and a non- magnetic layer, the effect is known as spin-orbit torque (SOT), and is quantified by measuring the effective fields produced by a charge current injected into the device. In this work, we present a new experimental technique to quantify directly the SOT based on the measurement of non-linearities of the dc current-voltage (IV) characteristics in Hall bar devices employing a simple instrumentation. Through the analysis of the IV curves, the technique provides directly the linearity of the effective fields with current, the detection of the current range in which the thermal effects can be relevant, the appearance of misalignments artefacts when the symmetry relations of SOT are not fulfilled, and the conditions for the validity of the single domain approximations, which are not considered in switching current and second harmonic generation state-of-the-art experiments. We have studied the SOT induced antidamping and field-like torques in Ta/Co/Pt asymmetric stacks with perpendicular magnetic anisotropy.
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a nd magnetic transition in these films have been reported recently, the non-equilibrium current-voltage ($I-V$) transport characteristics at the transition remains unexplored. Here we report the $I-V$ characteristics at zero magnetic field of a prototypical Ag/Au nanocluster film close to its resistivity transition at the critical temperature $T_{C}$ of $approx160$ K. The $I-V$ characteristics become strongly hysteretic close to the transition and exhibit a temperature-dependent critical current scale beyond which the resistance increases rapidly. Intriguingly, the non-equilibrium transport regime consists of a series of nearly equispaced resistance steps when the drive current exceeds the critical current. We have discussed the similarity of these observations with resistive transitions in ultra-thin superconducting wires via phase slip centres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا