ﻻ يوجد ملخص باللغة العربية
Quantum physics is known to allow for completely new ways to create, manipulate and store information. Quantum communication - the ability to transmit quantum information - is a primitive necessary for any quantum internet. At its core, quantum communication generally requires the formation of entangled links between remote locations. The performance of these links is limited by the classical signaling time between such locations - necessitating the need for long lived quantum memories. Here we present the design of a communications network which neither requires the establishment of entanglement between remote locations nor the use of long-lived quantum memories. The rate at which quantum data can be transmitted along the network is only limited by the time required to perform efficient local gate operations. Our scheme thus potentially provides higher communications rates than previously thought possible.
Global scale quantum communication links will form the backbone of the quantum internet. However, exponential loss in optical fibres precludes any realistic application beyond few hundred kilometres. Quantum repeaters and space-based systems offer to
We present a protocol for sending a message over a quantum channel with different layers of security that will prevent an eavesdropper from deciphering the message without being detected. The protocol has t
We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization
Recently in 2018, Niu et al. proposed a measurement-device-independent quantum secure direct communication protocol using Einstein-Podolsky-Rosen pairs and generalized it to a quantum dialogue protocol (Niu et al., Science bulletin 63.20, 2018). By a
Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the