ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 130606A as a Probe of the Intergalactic Medium and the Interstellar Medium in a Star-forming Galaxy in the First Gyr After the Big Bang

238   0   0.0 ( 0 )
 نشر من قبل Ryan Chornock
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ryan Chornock




اسأل ChatGPT حول البحث

We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z=5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z~6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 Angs due to absorption from Ly-alpha at redshift z~5.91, with some flux transmitted through the Ly-alpha forest between 7000-7800 Angs. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H]>-1.7 and an upper limit of [S/H]<-0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly-alpha seen in this spectrum over the redshift range z=4.9 to 5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of Delta-z=0.12 in the Ly-alpha forest at z=5.77 with no detected transmission, leading to a 3-sigma upper limit on the mean Ly-alpha transmission fraction of <0.2% (or tau_eff(Ly-alpha) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. We set a 2-sigma upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly-alpha red damping wing, assuming a model with a constant neutral density. Some Ly-beta and Ly-gamma transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the IGM is nonetheless mostly ionized at these redshifts. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.



قيم البحث

اقرأ أيضاً

293 - P.L. Capak , C. Carilli , G. Jones 2015
Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a chan ge in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.
Two decades of effort have been poured into both single-dish and interferometric millimeter-wave surveys of the sky to infer the volume density of dusty star-forming galaxies (DSFGs, with SFR>100M$_odot$ yr$^{-1}$) over cosmic time. Though obscured g alaxies dominate cosmic star-formation near its peak at $zsim2$, the contribution of such heavily obscured galaxies to cosmic star-formation is unknown beyond $zsim2.5$ in contrast to the well-studied population of Lyman-break galaxies (LBGs) studied through deep, space- and ground-based pencil beam surveys in the near-infrared. Unlocking the volume density of DSFGs beyond $z>3$, particularly within the first 1 Gyr after the Big Bang is critical to resolving key open questions about early Universe galaxy formation: (1) What is the integrated star-formation rate density of the Universe in the first few Gyr and how is it distributed among low-mass galaxies (e.g. Lyman-break galaxies) and high-mass galaxies (e.g. DSFGs and quasar host galaxies)? (2) How and where do the first massive galaxies assemble? (3) What can the most extreme DSFGs teach us about the mechanisms of dust production (e.g. supernovae, AGB stars, grain growth in the ISM) <1 Gyr after the Big Bang? We summarize the types of observations needed in the next decade to address these questions.
111 - S. L. Finkelstein 2013
Out of several dozen z > 7 candidate galaxies observed spectroscopically, only five have been confirmed via Lyman-alpha emission, at z=7.008, 7.045, 7.109, 7.213 and 7.215. The small fraction of confirmed galaxies may indicate that the neutral fracti on in the intergalactic medium (IGM) rises quickly at z > 6.5, as Lyman-alpha is resonantly scattered by neutral gas. However, the small samples and limited depth of previous observations makes these conclusions tentative. Here we report the results of a deep near-infrared spectroscopic survey of 43 z > 6.5 galaxies. We detect only a single galaxy, confirming that some process is making Lyman-alpha difficult to detect. The detected emission line at 1.0343 um is likely to be Lyman-alpha emission, placing this galaxy at a redshift z = 7.51, an epoch 700 million years after the Big Bang. This galaxys colors are consistent with significant metal content, implying that galaxies become enriched rapidly. We measure a surprisingly high star formation rate of 330 Msol/yr, more than a factor of 100 greater than seen in the Milky Way. Such a galaxy is unexpected in a survey of our size, suggesting that the early universe may harbor more intense sites of star-formation than expected.
We discovered Bowen emission arising from a strongly lensed (i.e., with magnification factor $mu$>20) source hosted in the Sunburst arc at z=2.37. We claim this source is plausibly a transient stellar object and study the unique ultraviolet lines eme rging from it. In particular, narrow ($sigma$_v ~ 40 km/s) ionisation lines of Fe fluoresce after being exposed to Lya radiation that pumps selectively their atomic levels. Data from VLT/MUSE, X-Shooter and ESPRESSO observations (the latter placed at the focus of the four UTs) at increasing spectral resolution of R=2500, 11400 and R=70000, respectively, confirm such fluorescent lines are present since at least 3.3 years (~ 1 year rest-frame). Additional Fe forbidden lines have been detected, while C and Si doublets probe an electron density n_e >~ $10^6$ cm$^{-3}$. Similarities with the spectral features observed in the circum-stellar Weigelt blobs of Eta-Carinae probing the circum-stellar dense gas condensations in radiation-rich conditions are observed. We discuss the physical origin of the transient event, which remains unclear. We expect such transient events (including also supernova or impostors) will be easily recognised with ELTs thanks to high angular resolution provided by adaptive optics and large collecting area, especially in modest ($mu < 3$) magnification regime.
130 - A.L.R. Danielson 2010
We present an analysis of the molecular and atomic gas emission in the rest-frame far-infrared and sub-millimetre, from the lensed z=2.3 sub-millimetre galaxy SMM J2135-0102. We obtain very high signal-to-noise detections of 11 transitions from 3 spe cies and limits on a further 20 transitions from 9 species. We use the 12CO, [CI] and HCN line strengths to investigate the gas mass, kinematic structure and interstellar medium (ISM) chemistry, and find strong evidence for a two-phase medium comprising a hot, dense, luminous component and an underlying extended cool, low-excitation massive component. Employing photo-dissociation region models we show that on average the molecular gas is exposed to a UV radiation field that is ~1000 x more intense than the Milky Way, with star-forming regions having a characteristic density of n~10^4 /cm^3. These conditions are similar to those found in local ULIRGs and in the central regions of typical starburst galaxies, even though the star formation rate is far higher in this system. The 12CO spectral line energy distribution and line profiles give strong evidence that the system comprises multiple kinematic components with different conditions, including temperature, and line ratios suggestive of high cosmic ray flux within clouds. We show that, when integrated over the galaxy, the gas and star-formation surface densities appear to follow the Kennicutt-Schmidt relation, although when compared to high-resolution sub-mm imaging, our data suggest that this relation breaks down on scales of <100pc. By virtue of the lens amplification, these observations uncover a wealth of information on the star formation and ISM at z~2.3 at a level of detail that has only recently become possible at z<0.1, and show the potential physical properties that will be studied in unlensed galaxies when ALMA is in full operation. (Abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا