ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a method for tailoring the absorption in a photonic crystal membrane. For that purpose, we first applied Time Domain Coupled Mode Theory to such a subwavelength membrane and demonstrated that 100% resonant absorption can be reached even for a symmetric membrane, if degenerate modes are involved. Design rules were then derived from this model in order to tune the absorption. Subsequently, Finite Difference Time Domain simulations were used as a proof of concept and carried out on a low absorbing material (extinction coefficient=10-2) with a high refractive index corresponding to the optical indices of amorphous silicon at around 720 nm. In doing so, 85% resonant absorption was obtained, which is significantly higher than the commonly reported 50% maximum value. Those results were finally analyzed and confronted to theory so as to extend our method to other materials, configurations and applications.
We demonstrate two-dimensional photonic crystal cavities operating at telecommunication wavelengths in a single-crystal diamond membrane. We use a high-optical-quality and thin (~ 300 nm) diamond membrane, supported by a polycrystalline diamond frame
A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of th
We demonstrate experimentally that the spectral broadening of CW supercontinuum can be controlled by using photonic crystal fibers with two zero-dispersion wavelengths pumped by an Yb fiber laser at 1064 nm. The spectrum is bounded by two dispersive
Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to a
The effects resulting from the introduction of a controlled perturbation in a single pattern membrane on its absorption are first studied and then analyzed on the basis of band folding considerations. The interest of this approach for photovoltaic ap