ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials

217   0   0.0 ( 0 )
 نشر من قبل Manvir Kushwaha
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the theoretical investigation of the plasmonic wave propagation in the coaxial cylindrical cables fabricated of both right-handed medium (RHM) [with $epsilon >0$, $mu >0$] and left-handed medium (LHM) [with $epsilon(omega) <0$, $mu(omega) <0$], using a Green-function (or response function) theory in the absence of an applied magnetic field. The Green-function theory generalized to be applicable to such quasi-one dimensional systems enables us to derive explicit expressions for the corresponding response functions (associated with the EM fields), which can in turn be used to derive various physical properties of the system. The confined plasmonic wave excitations in such multi-interface structures are characterized by the electromagnetic fields that are localized at and decay exponentially away from the interfaces. A rigorous analytical diagnosis of the general results in diverse situations leads us to reproduce exactly the previously well-known results in other geometries, obtained within the different theoretical frameworks. As an application, we present several illustrative examples on the dispersion characteristics of the confined (and extended) plasmonic waves in single- and double-interface structures made up of dispersive metamaterials interlaced with conventional dielectrics. These dispersive modes are also substantiated through the computation of local as well as total density of states. It is observed that the dispersive components enable the system to support the simultaneous existence of s- and p-polarization modes in the system. Such effects as this one are solely attributed to the negative-index metamaterials and are otherwise impossible...



قيم البحث

اقرأ أيضاً

Thanks to Victor Veselago for his hypothesis of negative index of refraction, metamaterials -- engineered composites -- can be designed to have properties difficult or impossible to find in nature: they can have both electrical permitivity ($epsilon$ ) and magnetic permeability ($mu$) simultaneously negative. The metamaterials -- henceforth negative-index materials (NIMs) -- owe their properties to subwavelength structure rather than to their chemical composition. The tailored electromagnetic response of the NIMs has had a dramatic impact on the classical optics: they are becoming known to have changed many basic notions related with the electromagnetism. The present article is focused on gathering and reviewing the fundamental characteristics of plasmon propagation in the coaxial cables fabricated of the right-handed medium (RHM) [with $epsilon>0$, $mu>0$] and the left-handed medium (LHM) [with $epsilon<0$, $mu<0$] in alternate shells starting from the innermost cable. Such structures as conceived here may pave the way to some interesting effects in relation to, e.g., the optical science exploiting the cylindrical symmetry of the coaxial waveguides that make it possible to perform all major functions of an optical fiber communication system in which the light is born, manipulated, and transmitted without ever leaving the fiber environment, with precise control over the polarization rotation and pulse broadening. The review also covers briefly the nomenclature, classification, potential applications, and the limitations (related, e.g., to the inherent losses) of the NIMs and their impact on the classical electrodynamics, in general, and in designing the cloaking devices, in particular. Recent surge in efforts on invisibility and the cloaking devices seems to have spoiled the researchers worldwide:
By using an elegant response function theory, which does not require matching of the messy boundary conditions, we investigate the surface plasmon excitations in the multicoaxial cylindrical cables made up of negative-index metamaterials. The multico axial cables with {em dispersive} metamaterial components exhibit rather richer (and complex) plasmon spectrum with each interface supporting two modes: one TM and the other TE for (the integer order of the Bessel function) $m e 0$. The cables with {em nondispersive} metamaterial components bear a different tale: they do not support simultaneously both TM and TE modes over the whole range of propagation vector. The computed local and total density of states enable us to substantiate spatial positions of the modes in the spectrum. Such quasi-one dimensional systems as studied here should prove to be the milestones of the emerging optoelectronics and telecommunications systems.
ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that the voids a re located away from the surface and have negligible or little effect on the whispering gallery mode resonances since the electromagnetic energy localizes near the surface of these microspheres. The existence of the voids indicates that helium gas or any evaporated target material was present within the molten microparticles during the microsphere formation.
We theoretically prove that electromagnetic beams propagating through a nonlinear cubic metamaterial can exhibit a power flow whose direction reverses its sign along the transverse profile. This effect is peculiar of the hitherto unexplored extreme n onlinear regime where the nonlinear response is comparable or even greater than the linear contribution, a condition achievable even at relatively small intensities. We propose a possible metamaterial structure able to support the extreme conditions where the polarization cubic nonlinear contribution does not act as a mere perturbation of the linear part.
Superconducting metamaterials are utilized to study the approach to the plasmonic limit simply by tuning temperature to modify the superfluid density, and thus the superfluid plasma frequency. We examine the persistence of artificial magnetism in a m etamaterial made with superconductors in the plasmonic limit, and compare to the electromagnetic behavior of normal metals as a function of frequency as the plasma frequency is approached from below. Spiral-shaped Nb thin film meta-atoms of scaled dimensions are employed to explore the plasmonic behavior in these superconducting metamaterials, and the scaling condition allows extraction of the temperature dependent superfluid density, which is found to be in good agreement with expectations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا