ﻻ يوجد ملخص باللغة العربية
We have recently demonstrated that optical pumping methods combined with photoassociation of ultra-cold atoms can produce ultra-cold and dense samples of molecules in their absolute rovibronic ground state. More generally, both the external and internal degrees of freedom can be cooled by addressing selected rovibrational levels on demand. Here, we recall the basic concepts and main steps of our experiments, including the excitation schemes and detection techniques we use to achieve the rovibrational cooling of Cs2 molecules. In addition, we present the determination of formation pathways and a theoretical analysis explaining the experimental observations. These simulations improves the spectroscopic knowledge required to transfer molecules to any desired rovibrational level.
We demonstrate rotational and vibrational cooling of cesium dimers by optical pumping techniques. We use two laser sources exciting all the populated rovibrational states, except a target state that thus behaves like a dark state where molecules pile
We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO$_2$ laser, and allowed to interact for
We demonstrate the conversion of cold Cs_{2} molecules initially distributed over several vibrational levels of the lowest triplet state a^{3}Sigma_{u}^{+} into the singlet ground state X^{1}Sigma_{g}^{+}. This conversion is realized by a broadband l
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now bee
Recent work with laser-cooled molecules in attractive optical traps has shown that the differential AC Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, an