ﻻ يوجد ملخص باللغة العربية
The model checking problem for propositional dynamic logic (PDL) over message sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given a channel bound $B$, a PDL formula $varphi$ and a CFM $mathcal{C}$, whether every existentially $B$-bounded MSC $M$ accepted by $mathcal{C}$ satisfies $varphi$. Recently, it was shown that this problem is PSPACE-complete. In the present work, we consider CRPDL over MSCs which is PDL equipped with the operators converse and repeat. The former enables one to walk back and forth within an MSC using a single path expression whereas the latter allows to express that a path expression can be repeated infinitely often. To solve the model checking problem for this logic, we define message sequence chart automata (MSCAs) which are multi-way alternating parity automata walking on MSCs. By exploiting a new concept called concatenation states, we are able to inductively construct, for every CRPDL formula $varphi$, an MSCA precisely accepting the set of models of $varphi$. As a result, we obtain that the model checking problem for CRPDL and CFMs is still in PSPACE.
We develop local reasoning techniques for message passing concurrent programs based on ideas from separation logics and resource usage analysis. We extend processes with permission- resources and define a reduction semantics for this extended languag
We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagners counting hierarchy, but also th
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Short-circuit evaluation is widely used in pro
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel
Mereology is the study of parts and the relationships that hold between them. We introduce a behavioral approach to mereology, in which systems and their parts are known only by the types of behavior they can exhibit. Our discussion is formally topos