ﻻ يوجد ملخص باللغة العربية
We study the weak antilocalization (WAL) effect in the magnetoresistance of narrow HgTe wires fabricated in quantum wells (QWs) with normal and inverted band ordering. Measurements at different gate voltages indicate that the WAL is only weakly affected by Rashba spin-orbit splitting and persists when the Rashba splitting is about zero. The WAL signal in wires with normal band ordering is an order of magnitude smaller than for inverted ones. These observations are attributed to a Dirac-like topology of the energy bands in HgTe QWs. From the magnetic-field and temperature dependencies we extract the dephasing lengths and band Berry phases. The weaker WAL for samples with a normal band structure can be explained by a non-universal Berry phase which always exceeds pi, the characteristic value for gapless Dirac fermions.
The anomalous magnetoresistance caused by the weak antilocalization (WAL) effects in 200-nm HgTe films is experimentally studied. The film is a high quality 3D topological insulator with much stronger spatial separation of surface states than in prev
The results of experimental study of interference induced magnetoconductivity in narrow HgTe quantum wells of hole-type conductivity with a normal energy spectrum are presented. Interpretation of the data is performed with taking into account the str
We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a f
The results of experimental study of the magnetoconductivity of 2D electron gas caused by suppression of the interference quantum correction in HgTe single quantum well heterostructure with the inverted energy spectrum are presented. It is shown that
Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here