ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of a metal-rich surface for the asteroid (16) Psyche from interferometric observations in the thermal infrared

105   0   0.0 ( 0 )
 نشر من قبل Alexis Matter
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the first determination of thermal properties and size of the M-type asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We used a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (2002, Icarus 159, 369-395), we derived a volume-equivalent diameter for (16) Psyche of 247 +- 25 km or 238 +- 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J.m-2.s-0.5.K-1, with a total uncertainty estimated to 40 J.m-2.s-0.5.K-1. They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the asteroid (16) Psyche.



قيم البحث

اقرأ أيضاً

Radar observations show that (16) Psyche is one of the largest and most massive asteroids of the M-class located in the main belt, with a diameter of approximately 230 km. This fact makes Psyche a unique object since observations indicated an iron-ni ckel composition. It is believed that this body may be what was left of a metal core of an early planet that would have been fragmented over millions of years due to violent collisions. In this work we study a variety of dynamical aspects related to the surface, as well as, the environment around this asteroid. We use computational tools to explore the gravitational field generated by this body, assuming constant values for its density and rotation period. We then determine a set of physical and dynamical characteristics over its entire surface. The results include the geometric altitude, geopotential altitude, tilt, slope, among others. We also explore the neighborhood around the asteroid (16) Psyche, so that the location and linear stability of the equilibrium points were found. We found four external equilibrium points, two of them linearly stable. We confirmed the stability of these points by performing numerical simulations of massless particles around the asteroid, which also showed an asymmetry in the size of the stable regions. In addition, we integrate a cloud of particles in the vicinity of (16) Psyche in order to verify in which regions of its surface the particles are most likely to collide.
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however c hallenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyches three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99,$pm$,0.26,g$cdot$cm$^{-3}$ for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites ($sim$7.8,g$cdot$cm$^{-3}$), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density $sim$4.25,$cdot$cm$^{-3}$). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460,$pm$,200},m at 150,km from Psyche (0.2%,$times$,R$_{Hill}$, the Hill radius) and 800,$pm$,200,m at 2,000,km (3%,$times$,$R_{Hill}$). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.
(16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Discovery-class Psyche mission. Despite gaining considerable interest in the scientific community, Psyches composition and formation remain unconstrained. Original ly, Psyche was considered to be almost entirely composed of metal due to its high radar albedo and spectral similarities to iron meteorites. More recent telescopic observations suggest the additional presence of low-Fe pyroxene and exogenic carbonaceous chondrites on the asteroids surface. To better understand the abundances of these additional materials, we investigated visible near-infrared (0.35 - 2.5 micron) spectral properties of three-component laboratory mixtures of metal, low-Fe pyroxene, and carbonaceous chondrite. We compared the band depths and spectral slopes of these mixtures to the telescopic spectrum of (16) Psyche to constrain material abundances. We find that the best matching mixture to Psyche consists of 82.5% metal, 7% low-Fe pyroxene, and 10.5% carbonaceous by weight, suggesting that the asteroid is less metallic than originally estimated (~94%). The relatively high abundance of carbonaceous chondrite material estimated from our laboratory experiments implies the delivery of this exogenic material through low velocity collisions to Psyches surface. Assuming that Psyches surface is representative of its bulk material content, our results suggest a porosity of 35% to match recent density estimates.
We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface therm al properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters (albedo, thermal inertia and roughness) are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m-2 s-0.5 K-1 and preferably in the range between 0 and 30 J m-2 s-0.5 K-1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.
The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroids surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially-resolved thermal inertia maps from non-resolved observations of asteroids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا