ﻻ يوجد ملخص باللغة العربية
Recent experimental work on superconducting transmon qubits in 3D cavities show that their coherence times are increased by an order of magnitude compared to their 2D cavity counterparts. However to take advantage of these coherence times while scaling up the number of qubits it is advantageous to address individual qubits which are all coupled to the same 3D cavity fields. The challenge in controlling this system comes from spectral crowding, where leakage transition of qubits are close to computational transitions in other. Here it is shown that fast pulses are possible which address single qubits using two quadrature control of the pulse envelope while the DRAG method alone only gives marginal improvements over the conventional Gaussian pulse shape. On the other hand, a first order result using the Magnus expansion gives a fast analytical pulse shape which gives a high fidelity gate for a specific gate time, up to a phase factor on the second qubit. Further numerical analysis corroborates these results and yields to even faster gates, showing that leakage state anharmonicity does not provide a fundamental quantum speed limit.
We present a few-parameter ansatz for pulses to implement a broad set of simultaneous single-qubit rotations in frequency-crowded multilevel systems. Specifically, we consider a system of two qutrits whose working and leakage transitions suffer from
Composite pulses are an efficient tool for robust quantum control. In this work, we derive the form of the composite pulse sequence to implement robust single-qubit gates in a three-level system, where two low-energy levels act as a qubit. The compos
We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are
We experimentally demonstrate the underlying physical mechanism of the recently proposed protocol for superreplication of quantum phase gates [W. Dur, P. Sekatski, and M. Skotiniotis, Phys. Rev. Lett. 114, 120503 (2015)], which allows to produce up t
Coherent operations constitutive for the implementation of single and multi-qubit quantum gates with trapped ions are demonstrated that are robust against variations in experimental parameters and intrinsically indeterministic system parameters. In p