ﻻ يوجد ملخص باللغة العربية
We consider the problem of computing approximate solution of Poisson equation in the low-parametric tensor formats. We propose a new algorithm to compute the solution based on the cross approximation algorithm in the frequency space, and it has better complexity with respect to ranks in comparison with standard algorithms, which are based on the exponential sums approximation. To illustrate the effectiveness of our solver, we incorporate into a Uzawa solver for the Stokes problem on semi-staggered grid as a subsolver. The resulting solver outperforms the standard method for $n geq 256$.
Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but
Transport maps have become a popular mechanic to express complicated probability densities using sample propagation through an optimized push-forward. Beside their broad applicability and well-known success, transport maps suffer from several drawbac
With already demonstrated in previous work the equations that describe the space dependence of the electric potential are determined by the solution of the equation of Poisson-Boltzmann. In this work we consider these solutions for the membrane of th
This paper proposes a computer-assisted solution existence verification method for the stationary Navier-Stokes equation over general 3D domains. The proposed method verifies that the exact solution as the fixed point of the Newton iteration exists a
We study an optimization problem that aims to determine the shape of an obstacle that is submerged in a fluid governed by the Stokes equations. The mentioned flow takes place in a channel, which motivated the imposition of a Poiseuille-like input fun