ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mg II 2797, 2803 emission in low-metallicity star-forming galaxies from the SDSS

132   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 65 Sloan Digital Sky Survey (SDSS) spectra of 62 star-forming galaxies with oxygen abundances 12 + logO/H ~ 7.5-8.4. Redshifts of selected galaxies are in the range z~0.36-0.70. This allows us to detect the redshifted MgII 2797,2803 emission lines. Our aim is to use these lines for the magnesium abundance determination. The MgII emission was detected in ~2/3 of the galaxies. We find that the MgII 2797 emission-line intensity follows a trend with the excitation parameter x= O^{2+}/O that is similar to that predicted by CLOUDY photoionised HII region models, suggesting a nebular origin of MgII emission. The Mg/O abundance ratio is lower by a factor ~2 than the solar ratio. This is probably the combined effect of interstellar MgII absorption and depletion of Mg onto dust. However, the effect of dust depletion in selected galaxies, if present, is small, by a factor of ~2 lower than that of iron.



قيم البحث

اقرأ أيضاً

A large sample of MgII emitting star-forming galaxies with low metallicity [O/H] = log(O/H)-log(O/H)sun between -0.2 and -1.2 dex is constructed from Data Release 14 of the Sloan Digital Sky Survey. We selected 4189 galaxies with MgII 2797, 2803 emis sion lines in the redshift range z~0.3-1.0 or 35% of the total Sloan Digital Sky Survey star-forming sample with redshift z>0.3. We study the dependence of the magnesium-to-oxygen and magnesium-to-neon abundance ratios on metallicity. Extrapolating this dependence to [Mg/Ne]=0 and to solar metallicity we derive a magnesium depletion of [Mg/Ne]~-0.4 (at solar metallicity). We prefer neon instead of oxygen to evaluate the magnesium depletion in the interstellar medium because neon is a noble gas and is not incorporated into dust, contrary to oxygen. Thus, we find that more massive and more metal abundant galaxies have higher magnesium depletion. The global parameters of our sample, such as the mass of the stellar population and star formation rate, are compared with previously obtained results from the literature. These results confirm that MgII emission has a nebular origin. Our data for interstellar magnesium-to-oxygen abundance ratios relative to the solar value are in good agreement with similar measurements made for Galactic stars, for giant stars in the Milky Way satellite dwarf galaxies, and with low-metallicity damped Lyman-alpha systems.
We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.
We present a sample of low-redshift (z<0.133) candidates for extremely low-metallicity star-forming galaxies with oxygen abundances 12+logO/H<7.4 selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Three methods are used to derive their oxygen abundances. Among these methods two are based on strong [OII]3727, [OIII]4959, and [OIII]5007 emission lines, which we call strong-line and semi-empirical methods. These were applied for all galaxies. We have developed one of these methods, the strong-line method, in this paper. This method is specifically focused on the accurate determination of metallicity in extremely low-metallicity galaxies and may not be used at higher metallicities with12+logO/H>7.5. The third, the direct Te method, was applied for galaxies with detected [OIII]4363 emission lines. All three methods give consistent abundances and can be used in combination or separately for selection of lowest-metallicity candidates. However, the strong-line method is preferable for spectra with a poorly detected or undetected [OIII]4363 emission line. In total, our list of selected candidates for extremely low-metallicity galaxies includes 66 objects.
187 - D. Schaerer 2019
The origin of nebular HeII emission, which is frequently observed in low-metallicity (O/H) star-forming galaxies, remains largely an unsolved question. Using the observed anticorrelation of the integrated X-ray luminosity per unit of star formation r ate ($L_X/{rm SFR}$) of an X-ray binary population with metallicity and other empirical data from the well-studied galaxy I Zw 18, we show that the observed HeII 4686 intensity and its trend with metallicity is naturally reproduced if the bulk of He$^+$ ionizing photons are emitted by the X-ray sources. We also show that a combination of X-ray binary population models with normal single and/or binary stellar models reproduces the observed $I(4686)/I(Hbeta)$ intensities and its dependency on metallicity and age. We conclude that both empirical data and theoretical models suggest that high-mass X-ray binaries are the main source of nebular HeII emission in low-metallicity star-forming galaxies.
300 - L.S.Pilyugin 2013
We analyse the oxygen abundance and specific star formation rates (sSFR) variations with redshift in star-forming SDSS galaxies of different masses. We find that the maximum value of the sSFR, sSFRmax, decreases when the stellar mass, Ms, of a galaxy increases, and decreases with decreasing of redshift. The sSFRmax can exceed the time-averaged sSFR by about an order of magnitude for massive galaxies. The metallicity - redshift relations for subsamples of galaxies with sSFR = sSFRmax and with sSFR = 0.1sSFRmax coincide for massive (log(Ms/Mo) > 10.5, with stellar mass Ms in solar units) galaxies and differ for low-mass galaxies. This suggests that there is no correlation between oxygen abundance and sSFR in massive galaxies and that the oxygen abundance correlates with the sSFR in low-mass galaxies. We find evidence in favour of that the irregular galaxies show, on average, higher sSFR and lower oxygen abundances than the spiral galaxies of similar masses and that the mass - metallicity relation for spiral galaxies differs slightly from that for irregular galaxies. The fact that our sample of low-mass galaxies is the mixture of spiral and irregular galaxies can be responsible for the dependence of the metallicity - redshift relation on the sSFR observed for the low-mass SDSS galaxies. The mass - metallicity and luminosity - metallicity relations obtained for irregular SDSS galaxies agree with corresponding relations for nearby irregular galaxies with direct abundance determinations. We find that the aperture effect does not make a significant contribution to the redshift variation of oxygen abundances in SDSS galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا