ﻻ يوجد ملخص باللغة العربية
The zero-field excitation spectrum of the strong-leg spin ladder (C$_7$H$_10$N)$_2$CuBr$_4$ (DIMPY) is studied with a neutron time-of-flight technique. The spectrum is decomposed into its symmetric and asymmetric parts with respect to the rung momentum and compared with theoretical results obtained by the density matrix renormalization group method. Additionally, the calculated dynamical correlations are shown for a wide range of rung and leg coupling ratios in order to point out the evolution of arising excitations, as e.g. of the two-magnon bound state from the strong to the weak coupling limit.
Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg $S=1/2$ ladder material (C$_7$H$_10$N)$_2$CuBr$_4$ in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin l
The strong-leg S=1/2 Heisenberg spin ladder system (C7H10N)2CuBr4 is investigated using Density Matrix Renormalization Group (DMRG) calculations, inelastic neutron scattering, and bulk magneto-thermodynamic measurements. Measurements showed qualitati
Topological order, the hallmark of fractional quantum Hall states, is primarily defined in terms of ground-state degeneracy on higher-genus manifolds, e.g. the torus. We investigate analytically and numerically the smooth crossover between this topol
We have studied electron spin resonance (ESR) absorption spectra for the nonmagnetically diluted strong-leg spin ladder magnet ({C}$_{7}$H$_{10}$N)$_{2}$Cu$_{(1-x)}$Zn$_{x}$Br$_{4}$ (abbreviated as DIMPY) down to 450 mK. Formation of the clusters wit
We report on zero-field muon spin rotation, electron spin resonance and polarized Raman scattering measurements of the coupled quantum spin ladder Ba2CuTeO6. Zero-field muon spin rotation and electron spin resonance probes disclose a successive cross