ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-colour generation in a chirped seeded Free-Electron Laser

171   0   0.0 ( 0 )
 نشر من قبل Beno\\^it Mahieu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.



قيم البحث

اقرأ أيضاً

We demonstrate the possibility to run a single-pass free-electron laser in a new dynamical regime, which can be exploited to perform two-colour pump-probe experiments in the VUV/X-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the emitted light is eventually split in two sub-pulses, whose spectral and temporal separations can be independently controlled. We provide a theoretical description of this phenomenon, which is found in good agreement with experiments performed on the FERMI@Elettra free-electron laser.
Attosecond pulses are fundamental for the investigation of valence and core-electron dynamics on their natural timescale. At present the reproducible generation and characterisation of attosecond waveforms has been demonstrated only through the proce ss of high-order harmonic generation. Several methods for the shaping of attosecond waveforms have been proposed, including metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allow for the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free Electron Lasers, on the contrary, deliver femtosecond, extreme ultraviolet and X-ray pulses with energies ranging from tens of $mathrm{mu}$J to a few mJ. Recent experiments have shown that they can generate sub-fs spikes, but with temporal characteristics that change shot-to-shot. Here we show the first demonstration of reproducible generation of high energy ($mathrm{mu}$J level) attosecond waveforms using a seeded Free Electron Laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with a novel approach for its temporal reconstruction. The results presented here open the way to perform attosecond time-resolved experiments with Free Electron Lasers.
A technique is proposed to generate attosecond pulse trains of radiation from a Free-Electron Laser amplifier. The optics-free technique synthesises a comb of longitudinal modes by applying a series of spatio-temporal shifts between the co-propagatin g radiation and electron bunch in the FEL. The modes may be phase-locked by modulating the electron beam energy at the mode spacing frequency. Three-dimensional simulations demonstrate the generation of a train of 400as pulses at giga-watt power levels evenly spaced by 2.5fs at a wavelength of 124 Angstrom. In the X-ray at wavelength 1.5 Angstrom, trains of 23as pulses evenly spaced by 150as and of peak power up to 6GW are predicted.
We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely m anipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.
The quantum mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires the generation of laser pulses shorter than 1 fs and of sufficient intensit y to interact with their target with high probability. Probing these dynamics with atomic-site specificity requires the extension of sub-femtosecond pulses to the soft X-ray spectral region. Here we report the generation of isolated GW-scale soft X-ray attosecond pulses with an X-ray free-electron laser. Our source has a pulse energy that is six orders of magnitude larger than any other source of isolated attosecond pulses in the soft X-ray spectral region, with a peak power in the tens of gigawatts. This unique combination of high intensity, high photon energy and short pulse duration enables the investigation of electron dynamics with X-ray non-linear spectroscopy and single-particle imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا