ترغب بنشر مسار تعليمي؟ اضغط هنا

Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence III: Theory for Experimental Design

144   0   0.0 ( 0 )
 نشر من قبل Gregory G. Howes
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence in space and astrophysical plasmas is governed by the nonlinear interactions between counterpropagating Alfven waves. Here we present the theoretical considerations behind the design of the first laboratory measurement of an Alfven wave collision, the fundamental interaction underlying Alfvenic turbulence. By interacting a relatively large-amplitude, low-frequency Alfven wave with a counterpropagating, smaller-amplitude, higher-frequency Alfven wave, the experiment accomplishes the secular nonlinear transfer of energy to a propagating daughter Alfven wave. The predicted properties of the nonlinearly generated daughter Alfven wave are outlined, providing a suite of tests that can be used to confirm the successful measurement of the nonlinear interaction between counterpropagating Alfven waves in the laboratory.



قيم البحث

اقرأ أيضاً

231 - Benjamin Brown 2010
Plasma experiments in laboratory settings offer unique opportunities to address fundamental aspects of the solar dynamo and magnetism in the solar atmosphere. We argue here that ground-based laboratory experiments have direct connections to NASA base d missions and NSF programs, and that a small investment in laboratory heliophysics may have a high payoff. We advocate for broad involvement in community-scale plasma experiments.
The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio sources seen from the Earth. The formation and motion of type III fine frequency structures is a puzzle but is commonly believed to be related to plasma turbulence in the solar corona and solar wind. Combining a theoretical framework with kinetic simulations and high-resolution radio type III observations using the Low Frequency Array, we quantitatively show that the fine structures are caused by the moving intense clumps of Langmuir waves in a turbulent medium. Our results show how type III fine structure can be used to remotely analyse the intensity and spectrum of compressive density fluctuations, and can infer ambient temperatures in astrophysical plasma, both significantly expanding the current diagnostic potential of solar radio emission.
209 - G. G. Howes 2015
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti c plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfven waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfven waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
222 - F. Suzuki-Vidal 2010
We present experimental results on the formation of supersonic, radiatively cooled jets driven by pressure due to the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the experiments is relevant to astrophysical jet scenarios in which a jet on the axis of a magnetic cavity is collimated by a toroidal magnetic field as it expands into the ambient medium. The jets in the experiments have similar Mach number, plasma beta and cooling parameter to those in protostellar jets. Additionally the Reynolds, magnetic Reynolds and Peclet numbers are much larger than unity, allowing the experiments to be scaled to astrophysical flows. The experimental configuration allows for the generation of episodic magnetic cavities, suggesting that periodic fluctuations near the source may be responsible for some of the variability observed in astrophysical jets. Preliminary measurements of kinetic, magnetic and Poynting energy of the jets in our experiments are presented and discussed, together with estimates of their temperature and trapped toroidal magnetic field.
135 - D. Tsiklauri 2016
In the previous works harmonic, phase-mixed, Alfven wave dynamics was considered both in the kinetic and magnetohydrodynamic regimes. Up today only magnetohydrodynamic, phase-mixed, Gaussian Alfven pulses were investigated. In the present work we ext end this into kinetic regime. Here phase-mixed, Gaussian Alfven pulses are studied, which are more appropriate for solar flares, than harmonic waves, as the flares are impulsive in nature. Collisionless, phase-mixed, dispersive, Gaussian Alfven pulse in transversely inhomogeneous plasma is investigated by particle-in-cell (PIC) simulations and by an analytical model. The pulse is in inertial regime with plasma beta less than electron-to-ion mass ratio and has a spatial width of 12 ion inertial length. The linear analytical model predicts that the pulse amplitude decrease is described by the linear Korteweg de Vries (KdV) equation. The numerical and analytical solution of the linear KdV equation produces the pulse amplitude decrease in time as $t^{-1}$. The latter scaling law is corroborated by full PIC simulations. It is shown that the pulse amplitude decrease is due to dispersive effects, while electron acceleration is due to Landau damping of the phase-mixed waves. The established amplitude decrease in time as $t^{-1}$ is different from the MHD scaling of $t^{-3/2}$. This can be attributed to the dispersive effects resulting in the different scaling compared to MHD, where the resistive effects cause the damping, in turn, enhanced by the inhomogeneity. Reducing background plasma temperature and increase in ion mass yields more efficient particle acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا