U(1)_{B_1+B_2-2L_1} mediation for the natural SUSY and the anomalous muon g-2


الملخص بالإنكليزية

We propose a U(1)^prime mediated supersymmetry (SUSY) breaking, in which U(1)^prime is identified with U(1)_{B_1+B_2-2L_1}. The U(1)_{B_1+B_2-2L_1} gauge symmetry, which is anomaly-free with the field contents of the minimal supersymmetric standard model, assigns pm 1/3 charges to the first and second generations of the quarks, and mp 2 to the first generation of the leptons. As a result, the first two generations of squarks acquire masses of about 7 TeV, and the first generation of the sleptons do those of 40 TeV, respectively, in the presence of one or three pairs of extra vector-like matter {{bf 5},bar{bf 5}}. Non-observation on extra colored particles below 1 TeV at the large hadron collider, and also the flavor violations such as mu^-rightarrow e^-gamma are explained. By virtue of such a gauge symmetry, proton stability can be protected. The other squarks and sleptons as well as the gauginos can obtain masses of order 10^{2-3} GeV through the conventional gravity or gauge mediated SUSY breaking mechanism. The relatively light smuon/sneutrino and the neutralino/chargino could be responsible for the (g-2)_mu deviated from the standard model prediction. The stop mass of sim 500 GeV relieves the fine-tuning problem in the Higgs sector. Two-loop effects by the relatively heavy sfermions can protect the smallness of the stop mass from the radiative correction by the heavy gluino (gtrsim 1 TeV). Extra vector-like matter can enhance the radiative corrections to the Higgs mass up to 126 GeV, and induce the desired mixing among the chiral fermions after U(1)_{B_1+B_2-2L_1} breaking.

تحميل البحث