ترغب بنشر مسار تعليمي؟ اضغط هنا

FLAMES and XSHOOTER spectroscopy along the two BSS sequences of M30

102   0   0.0 ( 0 )
 نشر من قبل Loredana Lovisi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectroscopic observations acquired with FLAMES and XSHOOTER at the Very Large Telescope for a sample of 15 Blue Straggler Stars (BSSs) in the globular cluster (GC) M30. The targets have been selected to sample the two BSS sequences discovered, with 7 BSSs along the blue sequence and 8 along the red one. No difference in the kinematical properties of the two groups of BSSs has been found. In particular, almost all the observed BSSs have projected rotational velocity lower than ~30 km/s, with only one (blue) fast rotating BSS (>90 km/s), identified as a W UMa binary. This rotational velocity distribution is similar to those obtained in 47 Tucanae and NGC 6397, while M4 remains the only GC studied so far harboring a large fraction of fast rotating BSSs. All stars hotter than ~7800 K (regardless of the parent BSS sequence) show iron abundances larger than those measured from normal cluster stars, with a clearcut trend with the effective temperature. This behaviour suggests that particle trasport mechanisms driven by radiative levitation occur in the photosphere of these stars, as already observed for the BSSs in NGC 6397. Finally, 4 BSSs belonging to the red sequence (not affected by radiative levitation) show a strong depletion of [O/Fe], with respect to the abundance measured in Red Giant Branch and Horizontal Branch stars. This O-depletion is compatible with the chemical signature expected in BSSs formed by mass transfer processes in binary systems, in agreement with the mechanism proposed for the formation of BSSs in the red sequence.



قيم البحث

اقرأ أيضاً

317 - F. R. Ferraro 2010
Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxys history. Blue stragglers are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently, the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M30. This globular cluster is thought to have undergone core collapse, during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences arise from the cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.
We analyze the position of the two populations of blue stragglers in the globular cluster M30 in the Hertzsprung-Russell diagram. Both populations of blue stragglers are brighter than the clusters turn-off, but one population (the blue blue-straggler s) align along the zero-age main-sequence whereas the (red) population is elevated in brightness (or colour) by $sim 0.75$ mag. Based on stellar evolution and merger simulations we argue that the red population, which composes about 40% of the blue stragglers in M 30, is formed at a constant rate of $sim 2.8$ blue stragglers per Gyr over the last $sim 10$ Gyr. The blue population is formed in a burst that started $sim 3.2$ Gyr ago at a peak rate of $30$ blue stragglers per Gyr$^{-1}$ with an e-folding time scale of $0.93$ Gyr. We speculate that the burst resulted from the core collapse of the cluster at an age of about 9.8 Gyr, whereas the constantly formed population is the result of mass transfer and mergers through binary evolution. In that case about half the binaries in the cluster effectively result in a blue straggler.
62 - Masaaki Otsuka 2016
We performed a detailed spectroscopic analysis of the fullerene C60-containing planetary nebula (PN) Lin49 in the Small Magellanic Cloud using XSHOOTER at the ESO VLT and the Spitzer/IRS instruments. We derived nebular abundances for nine elements. W e used TLUSTY to derive photospheric parameters for the central star. Lin49 is C-rich and metal-deficient PN (Z~0.0006). The nebular abundances are in good agreement with Asymptotic Giant Branch nucleosynthesis models for stars with initial mass 1.25 Msun and metallicity Z = 0.001. Using the TLUSTY synthetic spectrum of the central star to define the heating and ionising source, we constructed the photoionisation model with CLOUDY that matches the observed spectral energy distribution (SED) and the line fluxes in the UV to far-IR wavelength ranges simultaneously. We could not fit the ~1-5 um SED using a model with 0.005-0.1 um-sized graphite grains and a constant hydrogen density shell owing to the prominent near-IR excess, while at other wavelengths the model fits the observed values reasonably well. We argue that the near-IR excess might indicate either (1) the presence of very small particles in the form of small carbon clusters, small graphite sheets, or fullerene precursors, or (2) the presence of a high-density structure surrounding the central star. We found that SMC C60 PNe show a near-IR excess component to lesser or greater degree. This suggests that these C60 PNe might maintain a structure nearby their central star.
327 - N. Markova , C. Evans , N. Bastian 2011
The Tarantula survey is an ESO Large Programme which has obtained multi-epochs spectroscopy of over 800 massive stars in the 30 Dor region in the Large Magelanic Cloud. Here we briefly describe the main drivers of the survey and the observational material derived.
79 - Yury Volkov 2019
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements , the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorized by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length $3$ and sphericity $2$. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion $3$ by generators and relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا