ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of IRIS diagnostics II. The formation of the Mg II h&k lines in the solar atmosphere

142   0   0.0 ( 0 )
 نشر من قبل Jorrit Leenaarts
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NASAs Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h&k line formation from 3D radiation-MHD models. We compute the vertically emergent h&k intensity from a snapshot of a dynamic 3D radiation-MHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and the k line we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anticorrelated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the transition region. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h&k lines are excellent probes of the very upper chromosphere just below the transition region, a height regime that is impossible to probe with other spectral lines.



قيم البحث

اقرأ أيضاً

NASAs Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding t he observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.
The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of tw o of the strongest of these lines: the Mg II h & k resonance lines. We present a detailed study of the response of these lines to a solar flare. The spatial and temporal behaviour of the integrated intensities, k/h line ratios, line of sight velocities, line widths and line asymmetries were investigated during an M class flare (SOL2014-02-13T01:40). Very intense, spatially localised energy input at the outer edge of the ribbon is observed, resulting in redshifts equivalent to velocities of ~15-26km/s, line broadenings, and a blue asymmetry in the most intense sources. The characteristic central reversal feature that is ubiquitous in quiet Sun observations is absent in flaring profiles, indicating that the source function increases with height during the flare. Despite the absence of the central reversal feature, the k/h line ratio indicates that the lines remain optically thick during the flare. Subordinate lines in the Mg II passband are observed to be in emission in flaring sources, brightening and cooling with similar timescales to the resonance lines. This work represents a first analysis of potential diagnostic information of the flaring atmosphere using these lines, and provides observations to which synthetic spectra from advanced radiative transfer codes can be compared.
The O I 135.56 nm line is covered by NASAs Interface Region Imaging Spectrograph (IRIS) small explorer mission which studies how the solar atmosphere is energized. We here study the formation and diagnostic potential of this line by means of non-LTE modelling employing both 1D semi-empirical and 3D radiation-Magneto Hydrodynamic (RMHD) models. We study the basic formation mechanisms and derive a quintessential model atom that incorporates the essential atomic physics for the formation of the O I 135.56 nm line. This atomic model has 16 levels and describes recombination cascades through highly excited levels by effective recombination rates. The ionization balance O I/O II is set by the hydrogen ionization balance through charge exchange reactions. The emission in the O I 135.56 nm line is dominated by a recombination cascade and the line is optically thin. The Doppler shift of the maximum emission correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.0 - 1.5 Mm height. The total intensity of the line emission is correlated with the square of the electron density. Since the O I 135.56 nm line is optically thin, the width of the emission line is a very good diagnostic of non-thermal velocities. We conclude that the O I 135.56 nm line is an excellent probe of the middle chromosphere, and compliments other powerful chromospheric diagnostics of IRIS such as the Mg II h & k lines and the C II lines around 133.5 nm.
The C I 135.58 line is located in the wavelength range of NASAs Interface Region Imagin Spectrograph (IRIS) small explorer mission. We here study the formation and diagnostic potential of this line by means of non local-thermodynamic-equilibrium mode ling, employing both 1D and 3D radiation-magnetohydrodynamic models. The C I/C II ionization balance is strongly influenced by photoionization by Ly-alpha emission. The emission in the C I 135.58 line is dominated by a recombination cascade and the line forming region is optically thick. The Doppler shift of the line correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.5 Mm height. With IRIS the C I 135.58 line is usually observed together with the O I 135.56 line, and from the Doppler shift of both lines, we obtain the velocity difference between the line forming regions of the two lines. From the ratio of the C I/O I line core intensity, we can determine the distance between the C I and the O I forming layers. Combined with the velocity difference, the velocity gradient at mid-chromospheric heights can be derived. The C I/O I total intensity line ratio is correlated with the inverse of the electron density in the mid-chromosphere. We conclude that the C I 135.58 line is an excellent probe of the middle chromosphere by itself, and together with the O I 135.56 line the two lines provide even more information, which complements other powerful chromospheric diagnostics of IRIS such as the Mg II h and k lines and the C II lines around 133.5 nm.
We performed coordinated observations of AR 12205, which produced a C-class flare on 2014 November 11, with the Interface Region Imaging Spectrograph (IRIS) and the Domeless Solar Telescope (DST) at Hida Observatory. Using spectral data in the Si IV 1403 AA, C II 1335 AA, and Mg II h and k lines from IRIS and the Ca II K, Ca II 8542 AA, and H$alpha$ lines from DST, we investigated a moving flare kernel during the flare. In the Mg II h line, the leading edge of the flare kernel showed the intensity enhancement in the blue wing, and the smaller intensity of the blue-side peak (h2v) than that of the red-side one (h2r). The blueshift lasted for 9-48 s with a typical speed of 10.1 $pm$ 2.6 km s$^{-1}$ and it was followed by the high intensity and the large redshift with a speed of up to 51 km s$^{-1}$ detected in the Mg II h line. The large redshift was a common property for all six lines but the blueshift prior to it was found only in the Mg II lines. A cloud modeling of the Mg II h line suggests that the blue wing enhancement with such peak difference can be caused by a chromospheric-temperature (cool) upflow. We discuss a scenario in which an upflow of cool plasma is lifted up by expanding hot plasma owing to the deep penetration of non-thermal electrons into the chromosphere. Furthermore, we found that the blueshift persisted without any subsequent redshift in the leading edge of the flare kernel during its decaying phase. The cause of such long-lasting blueshift is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا