ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the MALT90 Survey and the Mopra Telescope at 90 GHz

137   0   0.0 ( 0 )
 نشر من قبل Jonathan Foster
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey and the Mopra telescope at 90 GHz. We combine repeated position-switched observations of the source G300.968+01.145 with a map of the same source in order to estimate the pointing reliability of the position-switched observations and, by extension, the MALT90 survey; we estimate our pointing uncertainty to be 8 arcseconds. We model the two strongest sources of systematic gain variability as functions of elevation and time-of-day and quantify the remaining absolute flux uncertainty. Corrections based on these two variables reduce the scatter in repeated observations from 12-25% down to 10-17%. We find no evidence for intrinsic source variability in G300.968+01.145. For certain applications, the corrections described herein will be integral for improving the absolute flux calibration of MALT90 maps and other observations using the Mopra telescope at 90 GHz.



قيم البحث

اقرأ أيضاً

The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey aims to characterise the physical and chemical evolution of high-mass star-forming clumps. Exploiting the unique broad frequency range and on-the-fly mapping capabilities of the Australia Te lescope National Facility Mopra 22 m single-dish telescope, MALT90 has obtained 3 x 3 maps toward ~2000 dense molecular clumps identified in the ATLASGAL 870 um Galactic plane survey. The clumps were selected to host the early stages of high-mass star formation and to span the complete range in their evolutionary states (from prestellar, to protostellar, and on to HII regions and photodissociation regions). Because MALT90 mapped 16 lines simultaneously with excellent spatial (38) and spectral (0.11 km/s) resolution, the data reveal a wealth of information about the clumps morphologies, chemistry, and kinematics. In this paper we outline the survey strategy, observing mode, data reduction procedure, and highlight some early science results. All MALT90 raw and processed data products are available to the community. With its unprecedented large sample of clumps, MALT90 is the largest survey of its type ever conducted and an excellent resource for identifying interesting candidates for high resolution studies with ALMA.
ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the Brick, the target of successful ALMA Cycle 0 and Cycle 1 proposals.
We describe a pilot survey conducted with the Mopra 22-m radio telescope in preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). We identified 182 candidate dense molecular clumps using six different selection criteria and mapped each source simultaneously in 16 different lines near 90 GHz. We present a summary of the data and describe how the results of the pilot survey shaped the design of the larger MALT90 survey. We motivate our selection of target sources for the main survey based on the pilot detection rates and demonstrate the value of mapping in multiple lines simultaneously at high spectral resolution.
We present the results of a programme of scanning and mapping observations of astronomical masers and Jupiter designed to characterise the performance of the Mopra Radio Telescope at frequencies between 16-50 GHz using the 12-mm and 7-mm receivers. W e use these observations to determine the telescope beam size, beam shape and overall telescope beam efficiency as a function of frequency. We find that the beam size is well fit by $lambda$/$D$ over the frequency range with a correlation coefficient of ~90%. We determine the telescope main beam efficiencies are between ~48-64% for the 12-mm receiver and reasonably flat at ~50% for the 7-mm receiver. Beam maps of strong H$_2$O (22 GHz) and SiO masers (43 GHz) provide a means to examine the radial beam pattern of the telescope. At both frequencies the radial beam pattern reveals the presence of three components, a central `core, which is well fit by a Gaussian and constitutes the telescopes main beam, and inner and outer error beams. At both frequencies the inner and outer error beams extend out to approximately 2 and 3.4 times the full-width half maximum of the main beam respectively. Sources with angular sizes a factor of two or more larger than the telescope main beam will couple to the main and error beams, and therefore the power contributed by the error beams needs to be considered. From measurements of the radial beam power pattern we estimate the amount of power contained in the inner and outer error beams is of order one-fifth at 22 GHz rising slightly to one-third at 43 GHz.
MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiple xed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8) and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا