ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for the Higgs boson decaying to W^{+} W^{-} -> l^{+}nu l^{-}nubar with the CDF II detector

138   0   0.0 ( 0 )
 نشر من قبل Eric James
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for a standard model Higgs boson decaying to two $W$ bosons that decay to leptons using the full data set collected with the CDF II detector in $sqrt{s}=1.96$ TeV $pbar{p}$ collisions at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.7 fb${}^{-1}$. We obtain no evidence for production of a standard model Higgs boson with mass between 110 and 200 GeV/$c^2$, and place upper limits on the production cross section within this range. We exclude standard model Higgs boson production at the 95% confidence level in the mass range between 149 and 172 GeV/$c^2$, while expecting to exclude, in the absence of signal, the range between 155 and 175 GeV/$c^2$. We also interpret the search in terms of standard model Higgs boson production in the presence of a fourth generation of fermions and within the context of a fermiophobic Higgs boson model. For the specific case of a standard model-like Higgs boson in the presence of fourth-generation fermions, we exclude at the 95% confidence level Higgs boson production in the mass range between 124 and 200 GeV/$c^2$, while expecting to exclude, in the absence of signal, the range between 124 and 221 GeV/$c^2$.



قيم البحث

اقرأ أيضاً

We present a search for the standard model Higgs boson production in association with a $W$ boson in proton-antiproton collisions ($pbar{p}rightarrow W^pm H rightarrow ell u bbar{b}$) at a center of mass energy of 1.96 TeV. The search employs data co llected with the CDF II detector which correspond to an integrated luminosity of approximately 2.7 fb$^{-1}$. We recorded this data with two kinds of triggers. The first kind required high-p$_T$ charged leptons and the second required both missing transverse energy and jets. The search selects events consistent with a signature of a single lepton ($e^pm/mu^pm$), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a jet probability tagging method. Kinematic information is fed in an artificial neural network to improve discrimination between signal and background. The search finds that both the observed number of events and the neural network output distributions are consistent with the standard model background expectations, and sets 95% confidence level upper limits on the production cross section times branching ratio. The limits are expressed as a ratio to the standard model production rate. The limits range from 3.6 (4.3 expected) to 61.1 (43.2 expected) for Higgs masses from 100 to 150 GeV/$c^{2}$, respectively.
This report was prepared in the context of the LPCC Electroweak Precision Measurements at the LHC WG and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. The NLO fixed-order predictions have been scrutinized at the technical level, using exactly the same inputs, setup and perturbative accuracy, in order to quantify the level of agreement of different implementations of the same calculation. A dedicated comparison, again at the technical level, of three codes that reach next-to-next-to-leading-order (NNLO) accuracy in quantum chromodynamics (QCD) for the total cross section has also been performed. These fixed-order results are a well-defined reference that allows a classification of the impact of higher-order sets of radiative corrections. Several examples of higher-order effects due to the strong or the EW interaction are discussed in this common framework. Also the combination of QCD and EW corrections is discussed, together with the ambiguities that affect the final result, due to the choice of a specific combination recipe.
The top quark and its properties within and beyond the Standard Model will be extensively studied at the incoming Large Hadron Collider. Nonetheless the top quark will play the role of the main background for most of the Higgs and new physics searche s. In this paper the top as a background to H=>WW=>2l2nu Higgs discovery channel will be studied. The current status of the Monte Carlo tools for t-tbar and single top simulation will be presented. Finally the problem on how to evaluate the top background from the data will be addressed and the related systematics will be discussed.
We report measurements of the decays B- -> Ds(*)+ K- l- nubar in a data sample containing 657x10^6 BBbar pairs collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. We observe a signal with a significance of 6 sigma for the c ombined Ds and Ds* modes and find the first evidence of the B- -> Ds+ K- l- nubar decay with a significance of 3.4 sigma. We measure the following branching fractions: BF(B- -> Ds+ K- l nubar) = (0.30 +/- 0.09(stat) +0.11 -0.08(syst)) x 10^-3 and BF(B- -> Ds*+ K- l- nubar) = (0.59 +/- 0.12(stat) +/- 0.15(syst)) x 10^-3 and set an upper limit BF(B- -> Ds*+ K- l- nubar) < 0.56 x 10^-3 at the 90% confidence level. We also present the first measurement of the Ds+K- invariant mass distribution in these decays, which is dominated by a prominent peak around 2.6 GeV/c^2.
We summarize and combine direct measurements of the mass of the $W$ boson in $sqrt{s} = 1.96 text{TeV}$ proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are c ombined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to $2.2 mathrm{fb}^{-1}$ of integrated luminosity, and a D0 measurement in the electron channel using data corresponding to $4.3 mathrm{fb}^{-1}$ of integrated luminosity. The resulting Tevatron average for the mass of the $W$ boson is $MW = 80,387 pm 16 text{MeV}$. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of $MW = 80,385 pm 15 text{MeV}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا