ﻻ يوجد ملخص باللغة العربية
As one of the emerging algorithms in the field of Artificial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been successfully applied to a number of challenging real-world problems. However, one criticism is the lack of a formal definition, which could result in ambiguity for understanding the algorithm. Moreover, previous investigations have mainly focused on its empirical aspects. Therefore, it is necessary to provide a formal definition of the algorithm, as well as to perform runtime analyses to revealits theoretical aspects. In this paper, we define the deterministic version of the DCA, named the dDCA, using set theory and mathematical functions. Runtime analyses of the standard algorithm and the one with additional segmentation are performed. Our analysis suggests that the standard dDCA has a runtime complexity of O(n2) for the worst-case scenario, where n is the number of input data instances. The introduction of segmentation changes the algorithms worst case runtime complexity to O(max(nN; nz)), for DC population size N with size of each segment z. Finally, two runtime variables of the algorithm are formulated based on the input data, to understand its runtime behaviour as guidelines for further development.
The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good w
The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders i
As one of the solutions to intrusion detection problems, Artificial Immune Systems (AIS) have shown their advantages. Unlike genetic algorithms, there is no one archetypal AIS, instead there are four major paradigms. Among them, the Dendritic Cell Al
As one of the newest members in the field of artificial immune systems (AIS), the Dendritic Cell Algorithm (DCA) is based on behavioural models of natural dendritic cells (DCs). Unlike other AIS, the DCA does not rely on training data, instead domain
Theoretical analyses of the Dendritic Cell Algorithm (DCA) have yielded several criticisms about its underlying structure and operation. As a result, several alterations and fixes have been suggested in the literature to correct for these findings. A