ﻻ يوجد ملخص باللغة العربية
We present a new calculation of the K->pi semileptonic form factor at zero momentum transfer in domain wall lattice QCD with Nf=2+1 dynamical quark flavours. By using partially twisted boundary conditions we simulate directly at the phenomenologically relevant point of zero momentum transfer. We perform a joint analysis for all available ensembles which include three different lattice spacings (a=0.09-0.14fm), large physical volumes (m_pi*L>3.9) and pion masses as low as 171 MeV. The comprehensive set of simulation points allows for a detailed study of systematic effects leading to the prediction f+(0)=0.9670(20)(+18/-46), where the first error is statistical and the second error systematic. The result allows us to extract the CKM-matrix element |Vus|=0.2237(+13/-8) and confirm first-row CKM-unitarity in the Standard Model at the sub per mille level.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the
We calculate the vector form factor in K to pi l u semileptonic decays at zero momentum transfer f_+(0) from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 16^3 times 32 at a lattice spacing of a simeq 0.1
We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K pi}(0) on the asqtad N_f=2+1 MILC c
The CKM matrix element $|V_{us}|$ can be extracted from the experimental measurement of semileptonic $Ktopi$ decays. The determination depends on theory input for the corresponding vector form factor in QCD. We present a preliminary update on our eff
We present our calculation of D to pi and D to K semileptonic form factors in Nf = 2+1 lattice QCD. We simulate three lattice cutoffs 1/a sim 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Mobius domain-wall action is employed for both