ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Transients in the Advanced LIGO/Virgo Horizon

107   0   0.0 ( 0 )
 نشر من قبل Jonah Kanner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced LIGO and Advanced Virgo will be all-sky monitors for merging compact objects within a few hundred Mpc. Finding the electromagnetic counterparts to these events will require an understanding of the transient sky at low red-shift (z<0.1). We performed a systematic search for extragalactic, low red-shift, transient events in the XMM-Newton Slew Survey. In a flux limited sample, we found that highly-variable objects comprised 10% of the sample, and that of these, 10% were spatially coincident with cataloged optical galaxies. This led to 4x10^-4 transients per square degree above a flux threshold of 3x10^-12 erg cm-2 s-1 [0.2-2 keV] which might be confused with LIGO/Virgo counterparts. This represents the first extragalactic measurement of the soft X-ray transient rate within the Advanced LIGO/Virgo horizon. Our search revealed six objects that were spatially coincident with previously cataloged galaxies, lacked evidence for optical AGNs, displayed high luminosities around 10^43 erg s-1, and varied in flux by more than a factor of ten when compared with the ROSAT All-Sky Survey. At least four of these displayed properties consistent with previously observed tidal disruption events.



قيم البحث

اقرأ أيضاً

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is BNS, NSBH, and BBH systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the advanced LIGO and Virgo detectors. To maximise both the confidence of the detection and the science return, it is essential to identify a n electromagnetic counterpart. This is not trivial, as the events are expected to be poorly localised, particularly in the near-term, with error regions covering hundreds or even thousands of square degrees. In this paper we discuss the prospects for finding an X-ray counterpart to a gravitational wave trigger with the Swift X-ray Telescope, using the assumption that the trigger is caused by a binary neutron star merger which also produces a short gamma-ray burst. We show that it is beneficial to target galaxies within the GW error region, highlighting the need for substantially complete galaxy catalogues out to distances of 300 Mpc. We also show that nearby, on-axis short GRBs are either extremely rare, or are systematically less luminous than those detected to date. We consider the prospects for detecting afterglow emission from an an off-axis GRB which triggered the GW facilities, finding that the detectability, and the best time to look, are strongly dependent on the characteristics of the burst such as circumburst density and our viewing angle.
We present the results of the optical follow-up, conducted by the TOROS collaboration, of gravitational wave events detected during the Advanced LIGO-Virgo second observing run (Nov 2016 -- Aug 2017). Given the limited field of view ($sim100arcmin$) of our observational instrumentation we targeted galaxies within the area of high localization probability that were observable from our sites. We analyzed the observations using difference imaging, followed by a Random Forest algorithm to discriminate between real and bogus transients. For all three events that we respond to, except GW170817, we did not find any bona fide optical transient that was plausibly linked with the observed gravitational wave event. Our observations were conducted using telescopes at Estaci{o}n Astrof{i}sica de Bosque Alegre, Cerro Tololo Inter-American Observatory, and the Dr. Cristina V. Torres Memorial Astronomical Observatory. Our results are consistent with the LIGO-Virgo detections of a binary black hole merger (GW170104) for which no electromagnetic counterparts were expected, as well as a binary neutron star merger (GW170817) for which an optical transient was found as expected.
We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact bin ary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgos first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 square degrees in 2015 to ~200 square degrees in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا