ﻻ يوجد ملخص باللغة العربية
We investigate conductance and conductance fluctuations of two transmembrane proteins, bacteriorhodopsin and proteorhodopsin, belonging to the family of protein light receptors. These proteins are widely diffused in aqueous environments, are sensitive to visible light and are promising biomaterials for the realization of novel photodevices. The conductance exhibits a rapid increase at increasing applied voltages, over a threshold value. Around the threshold value the variance of conductance fluctuations shows a dramatic jump of about 5 orders of magnitude: conductance and variance behaviours trace a second order phase transition. Furthermore, the conductance fluctuations evidence a non-Gaussian behaviour with a probability density function (PDF) which follows a generalized Gumbel distribution, typical of extreme-value statistics. The theoretical model is validated on existing current-voltage measurements and the interpretation of the PDF of conductance fluctuations is proven to be in line with the microscopic mechanisms responsible of charge transport.
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme.
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressur
Living cells are known to generate non-Gaussian active fluctuations that are significantly larger than thermal fluctuations owing to various metabolic activities. Understanding the effect of active fluctuations on various physicochemical processes, s
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded m
We report measurements of transfer functions and flux shifts of 20 on-chip high T$_C$ DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high T$_C$ thin film technology and they we