ﻻ يوجد ملخص باللغة العربية
A chiral $p_x+ip_y$ superconductor on a square lattice with nearest and next-nearest hopping and pairing terms is considered. Gap closures, as various parameters of the system are varied, are found analytically and used to identify the topological phases. The phases are characterized by Chern numbers (ranging from -3 to 3), and (numerically) by response to introduction of weak disorder, edges, and magnetic fields in an extreme type-II limit, focusing on the low-energy modes (which presumably become zero-energy Majorana modes for large lattices and separations). Several phases are found, including a phase with Chern number 3 that cannot be thought of in terms of a single range of interaction, and phase with Chern number 2 that may host an additional, disorder resistant, Majorana mode. The energies of the vortex quasiparticle modes were found to oscillate as vortex position varied. The spatial length scale of these oscillations was found for various points in the Chern number 3 phase which increased as criticality was approached.
Photoemission spectra of underdoped and lightly-doped Bi$_{2-z}$Pb$_z$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ($R=$ Pr, Er) (BSCCO) have been measured and compared with those of La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The lower-Hubbard band of the insula
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi
We present a reconfigurable topological photonic system consisting of a 2D lattice of coupled ring resonators, with two sublattices of site rings coupled by link rings, which can be accurately described by a tight-binding model. Unlike previous coupl
Topological superconductors are one of the most actively studied materials these days. They are a promising candidate for hosting Majorana fermions either on their boundaries or in vortex cores. Detecting 1D edge current around the periphery of a 2D
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra