ﻻ يوجد ملخص باللغة العربية
Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-bonding and steric interactions with neighboring residues, and is an important benchmark for computational studies of biomolecules. We have performed calculations on the heme binding site and a significant proportion of the protein environment (more than 1000 atoms) using linear-scaling density functional theory and the DFT+U method to correct for self-interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding nature of the discrimination effect (3.6 kcal/mol) and assumptions that the relative strain energy stored in the protein is low (less than 1 kcal/mol). Our calculations significantly widen the scope for tackling problems in drug design and enzymology, especially in cases where electron localization, allostery or long-ranged polarization influence ligand binding and reaction.
We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently availab
We present an approach to the DFT+U method (Density Functional Theory + Hubbard model) within which the computational effort for calculation of ground state energies and forces scales linearly with system size. We employ a formulation of the Hubbard
In approximate density functional theory (DFT), the self-interaction error is an electron delocalization anomaly associated with underestimated insulating gaps. It exhibits a predominantly quadratic energy-density curve that is amenable to correction
We recently introduced [J. Chem. Phys. 152 2020, 204103] the nuclear-electronic all-particle density matrix renormalization group method (NEAP-DMRG) to solve the molecular Schr{o}dinger equation, based on a stochastically optimized orbital basis, wit
We survey the underlying theory behind the large-scale and linear scaling DFT code, Conquest, which shows excellent parallel scaling and can be applied to thousands of atoms with exact solutions, and millions of atoms with linear scaling. We give det