ﻻ يوجد ملخص باللغة العربية
Sets of orthogonal martingales are importants because they can be used as stochastic integrators in a kind of chaotic representation property, see [20]. In this paper, we revisited the problem studied by W. Schoutens in [21], investigating how an inner product derived from an Uvarov transformation of the Laguerre weight function is used in the orthogonalization procedure of a sequence of martingales related to a certain Levy process, called Teugels Martingales. Since the Uvarov transformation depends by a c<0, we are able to provide infinite sets of strongly orthogonal martingales, each one for every c in (-infty,0). In a similar fashion of [21], we introduce a suitable isometry between the space of polynomials and the space of linear combinations of Teugels martingales as well as the general orthogonalization procedure. Finally, the new construction is applied to the Gamma process.
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit
The new complete orthonormal sets of -Laguerre type polynomials (-LTP,) are suggested. Using Schrodinger equation for complete orthonormal sets of -exponential type orbitals (-ETO) introduced by the author, it is shown that the origin of these polyno
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for
We show that the squared maximal height of the top path among $N$ non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can