ترغب بنشر مسار تعليمي؟ اضغط هنا

New isometry of Krall-Laguerre orthogonal polynomials in martingale spaces

123   0   0.0 ( 0 )
 نشر من قبل Edmundo J. Huertas Cejudo
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Sets of orthogonal martingales are importants because they can be used as stochastic integrators in a kind of chaotic representation property, see [20]. In this paper, we revisited the problem studied by W. Schoutens in [21], investigating how an inner product derived from an Uvarov transformation of the Laguerre weight function is used in the orthogonalization procedure of a sequence of martingales related to a certain Levy process, called Teugels Martingales. Since the Uvarov transformation depends by a c<0, we are able to provide infinite sets of strongly orthogonal martingales, each one for every c in (-infty,0). In a similar fashion of [21], we introduce a suitable isometry between the space of polynomials and the space of linear combinations of Teugels martingales as well as the general orthogonalization procedure. Finally, the new construction is applied to the Gamma process.



قيم البحث

اقرأ أيضاً

For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials.
136 - I. I. Guseinov 2012
The new complete orthonormal sets of -Laguerre type polynomials (-LTP,) are suggested. Using Schrodinger equation for complete orthonormal sets of -exponential type orbitals (-ETO) introduced by the author, it is shown that the origin of these polyno mials is the centrally symmetric potential which contains the core attraction potential and the quantum frictional potential of the field produced by the particle itself. The quantum frictional forces are the analog of radiation damping or frictional forces suggested by Lorentz in classical electrodynamics. The new -LTP are complete without the inclusion of the continuum states of hydrogen like atoms. It is shown that the nonstandard and standard conventions of -LTP and their weight functions are the same. As an application, the sets of infinite expansion formulas in terms of -LTP and L-Generalized Laguerre polynomials (L-GLP) for atomic nuclear attraction integrals of Slater type orbitals (STO) and Coulomb-Yukawa like correlated interaction potentials (CIP) with integer and noninteger indices are obtained. The arrange and rearranged power series of a general power function are also investigated. The convergence of these series is tested by calculating concrete cases for arbitrary values of parameters of orbitals and power function.
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for the SOP and for their Cauchy transforms, given as expectation values of traces and determinants or their inverses, respectively. Our proof uses the fact that the joint probability distribution function for all combinations of real eigenvalues and complex conjugate eigenvalue pairs can be written as a product. Examples for the SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion of characteristic polynomials. Such characteristic polynomials play the role of mass terms in applications to complex Dirac spectra in field theory. In addition, for the elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of Hermite polynomials.
We show that the squared maximal height of the top path among $N$ non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can be thought of as a discrete version of K. Johanssons result that the supremum of the Airy$_2$ process minus a parabola has the Tracy-Widom GOE distribution, and as such it provides an explanation for how this distribution arises in models belonging to the KPZ universality class with flat initial data. The result can be recast in terms of the probability that the top curve of the stationary Dyson Brownian motion hits an hyperbolic cosine barrier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا