ﻻ يوجد ملخص باللغة العربية
We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electron laser FELBE for wavelengths from 8 um to 220 um. The detector rise time is 50 ps in the wavelength range from 30 um to 220 um. Autocorrelation measurements exploiting the nonlinear photocurrent response at high intensities reveal an intrinsic response time below 10 ps. This detector has a high potential for characterizing temporal overlaps, e. g. in two-color pump-probe experiments.
Graphene, a unique two-dimensional material of carbon in a honeycomb lattice, has brought remarkable breakthroughs across the domains of electronics, mechanics, and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear disper
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters,
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum w
Broadband ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used to study molecular dynamics. However, these techniques are typically restricted to optically thick samples, such as solid
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report