ﻻ يوجد ملخص باللغة العربية
In one of the most important methods in Density Functional Theory - the Full-Potential Linearized Augmented Plane Wave (FLAPW) method - dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated to the next one in the sequence. We propose a novel approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials. The resulting solver, parallelized using the Elemental library framework, achieves excellent scalability and is competitive with current dense parallel eigensolvers.
Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of ortho
We investigate a parallelization strategy for dense matrix factorization (DMF) algorithms, using OpenMP, that departs from the legacy (or conventional) solution, which simply extracts concurrency from a multithreaded version of BLAS. This approach is
Matrix multiplication $A^t A$ appears as intermediate operation during the solution of a wide set of problems. In this paper, we propose a new cache-oblivious algorithm for the $A^t A$ multiplication. Our algorithm, A$scriptstyle mathsf{T}$A, calls c
Sparse matrix-vector multiplication (spMVM) is the dominant operation in many sparse solvers. We investigate performance properties of spMVM with matrices of various sparsity patterns on the nVidia Fermi class of GPGPUs. A new padded jagged diagonals
We present the submatrix method, a highly parallelizable method for the approximate calculation of inverse p-th roots of large sparse symmetric matrices which are required in different scientific applications. We follow the idea of Approximate Comput