ﻻ يوجد ملخص باللغة العربية
We discuss the conditions under which the predicted (but not yet observed) zero-field interlayer excitonic condensation in double layer graphene has a critical temperature high enough to allow detection. Crucially, disorder arising from charged impurities and corrugation in the lattice structure --- invariably present in all real samples --- affects the formation of the condensate via the induced charge inhomogeneity. In the former case, we use a numerical Thomas-Fermi-Dirac theory to describe the local fluctuations in the electronic density in double layer graphene devices and estimate the effect these realistic fluctuations have on the formation of the condensate. To make this estimate, we calculate the critical temperature for the interlayer excitonic superfluid transition within the mean-field BCS theory for both optimistic (unscreened) and conservative (statically screened) approximations for the screening of the interlayer Coulomb interaction. We also estimate the effect of allowing dynamic contributions to the interlayer screening. We then conduct similar calculations for double quadratic bilayer graphene, showing that the quadratic nature of the low-energy bands produces pairing with critical temperature of the same order of magnitude as the linear bands of double monolayer graphene.
The phase diagram of graphene decorated with magnetic adatoms distributed either on a single sublattice, or evenly over the two sublattices, is computed for adatom concentrations as low as $sim1%$. Within the framework of the $s$-$d$ interaction, we
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phase
We study the superconducting proximity effect in a quantum wire with broken time-reversal (TR) symmetry connected to a conventional superconductor. We consider the situation of a strong TR-symmetry breaking, so that Cooper pairs entering the wire fro
We study the thermal conductivity in disordered $s$-wave superconductors. Expanding on previous works for normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL) and weak anti-localization (WAL) eff
The incommensurate 30$^{circ}$ twisted bilayer graphene possesses both relativistic Dirac fermions and quasiperiodicity with 12-fold rotational symmetry arising from the interlayer interaction [Ahn et al., Science textbf{361}, 782 (2018) and Yao et a