ترغب بنشر مسار تعليمي؟ اضغط هنا

21 cm Angular Spectrum of Cosmic String Loops

195   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Tashiro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hiroyuki Tashiro




اسأل ChatGPT حول البحث

The 21 cm signatures induced by moving cosmic string loops are investigated. Moving cosmic string loops seed filamentary nonlinear objects. We analytically evaluate the differential 21 cm brightness temperature from these objects. We show that the brightness temperature reaches 200 mK for a loop whose tension is about the current upper limit, $Gmusim10^{-7}$. We also calculate the angular power spectrum, assuming scaling in loop distribution. We find that the angular power spectrum for $Gmu>10^{-8}$ at $z=30$ or $Gmu>10^{-10}$ at $z=20$ can dominate the spectrum of the primordial density fluctuations. Finally we show that a future SKA-like observation has the potential to detect the power spectrum due to loops with $Gmu=10^{-8}$ at $z=20$.



قيم البحث

اقرأ أيضاً

Observational effects of cosmic string loops depend on how loops are distributed in space. Chernoff cite{Chernoff} has argued that loops can be gravitationally captured in galaxies and that for sufficiently small values of $Gmu$ their distribution fo llows that of dark matter, independently of the loops length. We re-analyze this issue using the spherical model of galaxy formation with full account taken of the gravitational rocket effect -- loop accelerated motion due to asymmetric emission of gravitational waves. We find that only loops greater than a certain size are captured and that the number of captured loops is orders of magnitude smaller than estimated by Chernoff.
Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be accurately predicted using recently acquire d detailed knowledge of the loop production function. We emphasize that gravitational smoothing of long strings does not play any role in determining the total number of existing loops. We derive a bound on the string tension imposed by recent constraints on the stochastic gravitational wave background from pulsar timing arrays, finding $Gmu leq 2.8times 10^{-9}$. We also provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential forms.
142 - Rajesh Mondal 2019
The light-cone (LC) effect causes the mean as well as the statistical properties of the redshifted 21-cm signal $T_{rm b}(hat{bf n}, u)$ to change with frequency $ u$ (or cosmic time). Consequently, the statistical homogeneity (ergodicity) of the sig nal along the line of sight (LoS) direction is broken. This is a severe problem particularly during the Epoch of Reionization (EoR) when the mean neutral hydrogen fraction ($bar{x}_{rm HI}$) changes rapidly as the universe evolves. This will also pose complications for large bandwidth observations. These effects imply that the 3D power spectrum $P(k)$ fails to quantify the entire second-order statistics of the signal as it assumes the signal to be ergodic and periodic along the LoS. As a proper alternative to $P(k)$, we use the multi-frequency angular power spectrum (MAPS) ${mathcal C}_{ell}( u_1, u_2)$ which does not assume the signal to be ergodic and periodic along the LoS. Here, we study the prospects for measuring the EoR 21-cm MAPS using future observations with the upcoming SKA-Low. Ignoring any contribution from the foregrounds, we find that the EoR 21-cm MAPS can be measured at a confidence level $ge 5sigma$ at angular scales $ell sim 1300$ for total observation time $t_{rm obs} ge 128,{rm hrs}$ across $sim 44,{rm MHz}$ observational bandwidth. We also quantitatively address the effects of foregrounds on MAPS detectability forecast by avoiding signal contained within the foreground wedge in $(k_perp, k_parallel)$ plane. These results are very relevant for the upcoming large bandwidth EoR experiments as previous predictions were all restricted to individually analyzing the signal over small frequency (or equivalently redshift) intervals.
We examine the effects of cosmic strings on structure formation and on the ionization history of the universe. While Gaussian perturbations from inflation are known to provide the dominant contribution to the large scale structure of the universe, de nsity perturbations due to strings are highly non-Gaussian and can produce nonlinear structures at very early times. This could lead to early star formation and reionization of the universe. We improve on earlier studies of these effects by accounting for high loop velocities and for the filamentary shape of the resulting halos. We find that for string energy scales Gmu > 10^{-7} the effect of strings on the CMB temperature and polarization power spectra can be significant and is likely to be detectable by the Planck satellite. We mention shortcomings of the standard cosmological model of galaxy formation which may be remedied with the addition of cosmic strings, and comment on other possible observational implications of early structure formation by strings.
Neutral hydrogen (HI) intensity mapping is a promising technique to probe the large-scale structure of the Universe, improving our understanding on the late-time accelerated expansion. In this work, we first scrutinize how an alternative cosmology, i nteracting Dark Energy, can affect the 21-cm angular power spectrum relative to the concordance $Lambda$CDM model. We re-derive the 21-cm brightness temperature fluctuation in the context of such interaction and uncover an extra new contribution. Then we estimate the noise level of three upcoming HI intensity mapping surveys, BINGO, SKA1-MID Band$,$1 and Band$,$2, respectively, and employ a Fisher matrix approach to forecast their constraints on the interacting Dark Energy model. We find that while $textit{Planck},$ 2018 maintains its dominion over early-Universe parameter constraints, BINGO and SKA1-MID Band$,$2 put complementary bounding to the latest CMB measurements on dark energy equation of state $w$, the interacting strength $lambda_i$ and the reduced Hubble constant $h$, and SKA1-MID Band$,$1 even outperforms $textit{Planck},$ 2018 in these late-Universe parameter constraints. The expected minimum uncertainties are given by SKA1-MID Band$,$1+$textit{Planck},$: $sim 0.35%$ on $w$, $sim 0.27%$ on $h$, $sim 0.61%$ on HI bias $b_{rm HI}$, and an absolute uncertainty of about $3times10^{-4}$ ($7times10^{-4}$) on $lambda_{1}$ ($lambda_{2}$). Moreover, we quantify the effect of increasing redshift bins and inclusion of redshift-space distortions in updating the constraints. Our results indicate a bright prospect for HI intensity mapping surveys in constraining interacting Dark Energy, whether on their own or further by a joint analysis with other measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا