ﻻ يوجد ملخص باللغة العربية
We introduce the notion of a (strongly) topological lattice $mathcal{L}=(L,wedge ,vee)$ with respect to a subset $Xsubsetneqq L;$ aprototype is the lattice of (two-sided) ideals of a ring $R,$ which is(strongly) topological with respect to the prime spectrum of $R.$ We investigate and characterize (strongly) topological lattices. Given a non-zero left $R$-module $M,$ we introduce and investigate the spectrum $mathrm{Spec}^{mathrm{f}}(M)$ of textit{first submodules} of $M.$ We topologize $mathrm{Spec}^{mathrm{f}}(M)$ and investigate the algebraic properties of $_{R}M$ by passing to the topological properties of the associated space.
This paper studies the differential lattice, defined to be a lattice $L$ equipped with a map $d:Lto L$ that satisfies a lattice analog of the Leibniz rule for a derivation. Isomorphic differential lattices are studied and classifications of different
We investigate ideal-semisimple and congruence-semisimple semirings. We give several new characterizations of such semirings using e-projective and e-injective semimodules. We extend several characterizations of semisimple rings to (not necessarily subtractive) commutative semirings.
Let A denote the ring of differential operators on the affine line with its two usual generators t and d/dt given degrees +1 and -1 respectively. Let X be the stack having coarse moduli space the affine line Spec k[z] and isotropy groups Z/2 at each
The set of all maximal ideals of the ring $mathcal{M}(X,mathcal{A})$ of real valued measurable functions on a measurable space $(X,mathcal{A})$ equipped with the hull-kernel topology is shown to be homeomorphic to the set $hat{X}$ of all ultrafilters
Let k be a field, q in k. We derive a cup product formula on the Hochschild cohomology ring of a family Lambda_q of quiver algebras. Using this formula, we determine a subalgebra of k[x,y] isomorphic to Hochschild cohomology modulo N, where N is the