ﻻ يوجد ملخص باللغة العربية
G. Galanti and M .Roncadelli recently made public some comments on the article by D. Wouters and P. Brun about irregularities induced by photon mixing to axion-like particles in astrophysical media [Phys. Rev. D86, 043005 (2012)]. They claim in particular to have found some mistakes in the article. This note is a response to their comments, we refute their arguments and show that the results presented in the article are correct. It turns out most of the misunderstandings come from the definition of the beam initial state, some clarifications about which are given here.
Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external elec
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of
We show that the complex shape of the cosmic ray (CR) spectrum, as recently measured by PAMELA and inferred from Fermi-LAT gamma-ray observations of molecular clouds in the Gould belt, can be naturally understood in terms of basic plasma astrophysics
We report detection of a line-like feature in the $gamma$-ray spectrum of the blazar B0516$-$621, for which the data obtained with the Large Area Telescope onboard {it Fermi Gamma-Ray Space Telescope (Fermi)} are analyzed. The feature is at $sim$7,Ge
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain becaus