ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence

299   0   0.0 ( 0 )
 نشر من قبل Fabio Pezzoli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin orientation of photoexcited carriers and their energy relaxation is investigated in bulk Ge by studying spin-polarized recombination across the direct band gap. The control over parameters such as doping and lattice temperature is shown to yield high polarization degree, namely larger than 40%, as well as a fine-tuning of the angular momentum of the emitted light with a complete reversal between right- and left-handed circular polarization. By combining the measurement of the optical polarization state of band-edge luminescence and Monte Carlo simulations of carrier dynamics, we show that these very rich and complex phenomena are the result of the electron thermalization and cooling in the multi-valley conduction band of Ge. The circular polarization of the direct-gap radiative recombination is indeed affected by energy relaxation of hot electrons via the X valleys and the Coulomb interaction with extrinsic carriers. Finally, thermal activation of unpolarized L valley electrons accounts for the luminescence depolarization in the high temperature regime.



قيم البحث

اقرأ أيضاً

Copper metaborate CuB$_2$O$_{4}$ was studied by muon spin relaxation measurements in order to clarify its static and dynamic magnetic properties. The time spectra of muon spin depolarization suggest that the local fields at the muon site contain both static and fluctuating components in all ordered phases down to 0.3 K. In the weak ferromagnetic phase (20 K~$>T>$~9.3 K), the static component is dominant. On the other hand, upon cooling the fluctuating component becomes dominant in the incommensurate helix phase (9.3K > T > 1.4K). The dynamical fluctuations of the local fields persist down to 0.3K, where a new incommensurate phase (T < 1.4K) is expected to appear. This result suggests that spins fluctuate even at T to 0. We propose two possible origins of the remnant dynamical spin fluctuations: frustration of the exchange interactions and the dynamic behavior of the soliton lattice.
Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon intera ction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in silicon are found to be comparable to those in gallium arsenide, however, the spin lifetimes in silicon or germanium can be tuned by reducing the valley degeneracy through strain or quantum confinement. The tunable range is limited to slightly over an order of magnitude by intravalley processes.
We demonstrate a new method of measuring the exciton spin relaxation time in semiconductor nanostructures by continuous-wave photoluminescence. We find that for self-assembled CdTe quantum dots the degree of circular polarization of emission is large r when exciting polarized excitons into the lower energy spin state than in the case when the excitons are excited into the higher energy spin state. A simple rate equation model gives the exciton spin relaxation time in CdTe quantum dots equal to 4.8+/-0.3 ns, significantly longer than the quantum dot exciton recombination time 300 ps.
We have measured the inverse spin Hall effect (ISHE) in textit{n}-Ge at room temperature. The spin current in germanium was generated by spin pumping from a CoFeB/MgO magnetic tunnel junction in order to prevent the impedance mismatch issue. A clear electromotive force was measured in Ge at the ferromagnetic resonance of CoFeB. The same study was then carried out on several test samples, in particular we have investigated the influence of the MgO tunnel barrier and sample annealing on the ISHE signal. First, the reference CoFeB/MgO bilayer grown on SiO$_{2}$ exhibits a clear electromotive force due to anisotropic magnetoresistance and anomalous Hall effect which is dominated by an asymmetric contribution with respect to the resonance field. We also found that the MgO tunnel barrier is essential to observe ISHE in Ge and that sample annealing systematically lead to an increase of the signal. We propose a theoretical model based on the presence of localized states at the interface between the MgO tunnel barrier and Ge to account for these observations. Finally, all of our results are fully consistent with the observation of ISHE in heavily doped $n$-Ge and we could estimate the spin Hall angle at room temperature to be $approx$0.001.
138 - R. Geiger , T. Zabel , E. Marin 2015
We demonstrate the crossover from indirect- to direct band gap in tensile-strained germanium by temperature-dependent photoluminescence. The samples are strained microbridges that enhance a biaxial strain of 0.16% up to 3.6% uniaxial tensile strain. Cooling the bridges to 20 K increases the uniaxial strain up to a maximum of 5.4%. Temperature-dependent photoluminescence reveals the crossover to a fundamental direct band gap to occur between 4.0% and 4.5%. Our data are in good agreement with new theoretical computations that predict a strong bowing of the band parameters with strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا