ﻻ يوجد ملخص باللغة العربية
We examine the distinct part of the density autocorrelation function Fd(q,t), also called the intermediate scattering function, from the point of view of the vibration-transit (V-T) theory of monatomic liquid dynamics. A similar study has been reported for the self part, and we study the self and distinct parts separately because their damping processes are not simply related. We begin with the perfect vibrational system, which provides precise definitions of the liquid correlations, and provides the vibrational approximation Fdvib(q,t) at all q and t. Two independent liquid correlations are defined, motional and structural, and these are decorrelated sequentially, with a crossover time tc(q). This is done by two independent decorrelation processes: the first, vibrational dephasing, is naturally present in Fdvib(q,t) and operates to damp the motional correlation; the second, transit-induced decorrelation, is invoked to enhance the damping of motional correlation, and then to damp the structural correlation. A microscopic model is made for the transit drift, the averaged transit motion that damps motional correlation on 0 < t < tc(q). Following the previously developed self-decorrelation theory, a microscopic model is also made for the transit random walk, which damps the structural correlation on t > tc(q). The complete model incorporates a property common to both self and distinct decorrelation: simple exponential decay following a delay period, where the delay is tc(q, the time required for the random walk to emerge from the drift. Our final result is an accurate expression for Fd(q,t) for all q through the first peak in Sd(q). The theory is calibrated and tested using molecular dynamics (MD) calculations for liquid Na at 395K; however, the theory itself does not depend on MD, and we consider other means for calibrating it.
A new theoretical model for self dynamic response is developed using Vibration-Transit (V-T) theory, and is applied to liquid sodium at all wavevectors q from the hydrodynamic regime to the free particle limit. In this theory the zeroth-order Hamilto
In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering functi
We consider for a monatomic liquid the density and current autocorrelation functions from the point of view of the Vibration-Transit (V-T) theory of liquid dynamics. We also consider their Fourier transforms, one of which is measured by X-ray and neu
V-T theory is constructed in the many-body Hamiltonian formulation, and differs at the foundation from current liquid dynamics theories. In V-T theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single represen
The effect of a change of noise amplitudes in overdamped diffusive systems is linked to their unperturbed behavior by means of a nonequilibrium fluctuation-response relation. This formula holds also for systems with state-independent nontrivial diffu