ﻻ يوجد ملخص باللغة العربية
The results on rare decay processes obtained by the LHCb experiment using 1.0 fb^(-1) of pp collisions collected in 2011 at a centre-of-mass energy of sqrt(s)=7 TeV are presented. Branching fractions, angular distributions, CP and isospin asymmetries are investigated to search for new physics effects.
Rare decays involving leptons or photons in the final states are studied using 1.0 fb^{-1} of pp collisions at a centre-of-mass energy of sqrt{s}=7TeV collected by the LHCb experiment in 2011. We present results of measurements of branching ratios, a
The rare B decays Bs(d)-->mumu, B-->K*mumu and Bs-->phigamma are studied using up to sim 0.41 fb^{-1} of pp collisions at sqrt{s} = 7 TeV collected by the lhcb experiment in 2010 and 2011. A search for the decays Bs(d)-->mumu, is performed with 0.41
Rare lepton decays of the B(s), D and K mesons are sensitive probes of New Physics. In particular, the search for the decays $B^0_(s) -> mu^+ mu^-$ provides information on the presence of new (pseudo-)scalar particles. LHCb is well suited for these a
The LHCb experiment has the potential, during the 2010-11 run, to observe the rare decay $B^0_sto mu^+mu^-$ or improve significantly its exclusion limits. This study will provide very sensitive probes of New Physics (NP) effects. High sensitivity to
The direct searches for Beyond Standard Model (BSM) particles have been constraining their mass scale to the extent where it is now becoming consensual that such particles are likely to be above the energy reach of the LHC. Meanwhile, the studies of