ﻻ يوجد ملخص باللغة العربية
The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.
The Statistical Multifragmentation Model is modified to incorporate the Helmholtz free energies calculated in the finite temperature Thomas-Fermi approximation using Skyrme effective interactions. In this formulation, the density of the fragments at
On the basis of morphological thermodynamics we develop an exactly solvable version of statistical mutifragmentation model for the nuclear liquid-gas phase transition. It is shown that the hard-core repulsion between spherical nuclei generates only t
The statistical multifragmentation model (SMM) has been widely used to explain experimental data of intermediate energy heavy ion collisions. A later entrant in the field is the canonical thermodynamic model (CTM) which is also being used to fit expe
The agreement between the fragments internal and kinetic temperatures with the breakup temperature is investigated using a Statistical Multifragmentation Model which makes no a priori as- sumption on the relationship between them. We thus examine the
We study the size properties of the largest intermediate mass fragments in each partition mode, produced in the prompt statistical breakup of a thermally equilibrated nuclear source, at different temperatures. We find that an appreciable amount of ev