ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-stable source of polarization-entangled photons in a linear double-pass configuration

180   0   0.0 ( 0 )
 نشر من قبل Fabian Steinlechner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel folded sandwich configuration. Bi-directionally pumping a single periodically poled KTiOPO$_4$ (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 $mu$W of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of $99.3pm0.3$%.



قيم البحث

اقرأ أيضاً

We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon sources, and using linear optical tools only, we demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as well as all symmetric and non-symmetric total angular momentum eigenstates of the N qubit compound.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o f entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
190 - A. Martin 2009
We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at $655 nm$. The paired photons are emitted at the telecom wav elength of $1310 nm$ within a bandwidth of $0.7 nm$. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of $10^5$ pairs $s^{-1} GHz^{-1} mW^{-1}$, associated with its compactness and reliability, demonstrates the sources high potential for long-distance quantum communication.
High-fidelity polarization-entangled photons are a powerful resource for quantum communication, distributing entanglement and quantum teleportation. The Bell-CHSH inequality $Sleq2$ is violated by bipartite entanglement and only maximally entangled s tates can achieve $S=2sqrt{2}$, the Tsirelson bound. Spontaneous parametric down-conversion sources can produce entangled photons with correlations close to the Tsirelson bound. Sagnac configurations offer intrinsic stability, compact footprint and high collection efficiency, however, there is often a trade off between source brightness and entanglement visibility. Here, we present a Sagnac polarization-entangled source with $2sqrt{2}-S=(5.65pm0.57)times10^{-3}$, on-par with the highest values recorded, while generating and detecting $(4660pm70)$ pairs/s/mW, which is a substantially higher brightness than previously reported for Sagnac sources and around two orders of magnitude brighter than for traditional cone sources with the highest $S$ parameter. Our source records $0.9953pm0.0003$ concurrence and $0.99743pm0.00014$ fidelity to an ideal Bell state. By studying systematic errors in Sagnac sources, we identify that the precision of the collection focal point inside the crystal plays the largest role in reducing the $S$ parameter in our experiment. We provide a pathway that could enable the highest $S$ parameter recorded with a Sagnac source to-date while maintaining very high brightness.
We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا