ترغب بنشر مسار تعليمي؟ اضغط هنا

Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

117   0   0.0 ( 0 )
 نشر من قبل Manh Duc Le
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.



قيم البحث

اقرأ أيضاً

SIKA, a high-flux cold-neutron triple-axis spectrometer at the OPAL reactor at the Australian Nuclear Science and Technology Organization, is equipped with a 13-blade analyser and position-sensitive detector. This multiplexing design endows SIKA high flexibility to run in both traditional triple-axis and multiplexing analyser modes. In this study, two different multiplexing modes on SIKA are simulated using Monte-Carlo ray-tracing methods. The simulation results demonstrate SIKA capabilities to work in these operational modes, especially, the multi-Q const-Ef mode. This capability was demonstrated by measuring the phonon dispersion of a Pb single-crystal sample with the multi-Q const-Ef mode on SIKA. Compared to the traditional and multi-analyser triple-axis spectrometers, multiplexing modes on SIKA combine the advantages of the high data-acquisition efficiency and flexibility to focus on local areas of interest in the (Q, w) space.
The cold-neutron three-axis spectrometer MIRA is an instrument optimized for low-energy excitations. Its excellent intrinsic $Q$-resolution makes it ideal for studying incommensurate magnetic systems (elastic and inelastic). MIRA is at the forefront of using advanced neutron focusing optics such as elliptic guides, which enable the investigation of small samples under extreme conditions. Another advantage of MIRA is the modular assembly allowing for instrumental adaption to the needs of the experiment within a few hours. The development of new methods such as the spin-echo technique MIEZE is another important application at MIRA. Scientific topics include the investigation of complex inter-metallic alloys and spectroscopy on incommensurate magnetic structures.
The MAPS direct geometry time-of-flight chopper spectrometer at the ISIS pulsed neutron and muon source has been in operation since 1999 and its novel use of a large array of position-sensitive neutron detectors paved the way for a later generations of chopper spectrometers around the world. Almost two decades of experience of user operations on MAPS, together with lessons learned from the operation of new generation instruments, led to a decision to perform three parallel upgrades to the instrument. These were to replace the primary beamline collimation with supermirror neutron guides, to install a disk chopper, and to modify the geometry of the poisoning in the water moderator viewed by MAPS. Together these upgrades were expected to increase the neutron flux substantially, to allow more flexible use of repetition rate multiplication and to reduce some sources of background. Here we report the details of these upgrades, and compare the performance of the instrument before and after their installation, as well as to Monte Carlo simulations. These illustrate that the instrument is performing in line with, and in some respects in excess of, expectations. It is anticipated that the improvement in performance will have a significant impact on the capabilities of the instrument. A few examples of scientific commissioning are presented to illustrate some of the possibilities.
The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual use r experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T~0.05K, p>=2GPa and B=8T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.
The instrumental layout and technical realisation of the neutron resonant spin echo (NRSE) spectrometer RESEDA at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany, is presented. RESEDA is based on a longitudinal field configuration, boosti ng both dynamic range and maximum resolution of the spectrometer compared to the conventional transverse layout. The resonant neutron spin echo technique enables the realisation of two complementary implementations: A longitudinal NRSE (LNRSE) option comparable to the classical neutron spin echo (NSE) method for highest energy resolution and large momentum transfers as well as a Modulation of Intensity with Zero Effort (MIEZE) option for depolarising samples or sample environments such as high magnetic fields, and strong incoherent scattering samples. With their outstanding dynamic range, exceeding nominally seven orders of magnitude, both options cover new fields for ultra-high resolution neutron spectroscopy in hard and soft condensed matter systems. In this paper the concept of RESEDA as well as the technical realisation along with reference measurements are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا