ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of mesoscale eddies on water transport between the Pacific Ocean and the Bering Sea

154   0   0.0 ( 0 )
 نشر من قبل Michael Uleysky
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the southward flow in the western part ($r=-0.68$) and northward flow in the eastern part ($r=0.61$) of the NR. In fall, the water transport in different parts of the NS is determined by the strength of the anticyclonic mesoscale eddy located in the Alaskan Stream area.



قيم البحث

اقرأ أيضاً

We present the results of in-situ measurements of $^{134}$Cs and $^{137}$Cs released from the Fukushima Nuclear Power Plant (FNPP) collected at surface and different depths in the western North Pacific in June and July 2012. It was found that 15 mont h after the incident concentrations of radiocesium in the Japan and Okhotsk seas were at background or slightly increased level, while they had increased values in the subarctic front area east of Japan. The highest concentrations of $^{134}$Cs and $^{137}$Cs up to 13.5 ${pm}$ 0.9 and 22.7 ${pm}$ 1.5 Bq m$^{-3}$ have been found to exceed ten times the background levels before the accident. Maximal content of radiocesium was observed within subsurface and intermediate water layers inside the cores of anticyclonic eddies (100 - 500 m). Even slightly increased content of radiocesium was found at some eddies at depth of 1000 m. It is expected that convergence and subduction of surface water inside eddies are main mechanisms of downward transport of radionuclides. In situ observations are compared with the results of simulated advection of these radioisotopes by the AVISO altimetric velocity field. Different Lagrangian diagnostics are used to reconstruct the history and origin of synthetic tracers imitating measured seawater samples collected in each of those eddies. The results of observations are consistent with the simulated results. It is shown that the tracers, simulating water samples with increased radioactivity to be measured in the cruise, really visited the areas with presumably high level of contamination. Fast water advection between anticyclonic eddies and convergence of surface water inside eddies make them responsible for spreading, accumulation and downward transport of cesium rich water to the intermediate depth in the frontal zone.
The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of velocity gradients computed from in situ measurements are used to show that the anomalous s caling of the velocity structure functions at depths between 50 ad 500 m has a linear dependence on the exponent characterizing the strongest velocity gradient, with a slope that decreases with depth. Since the distribution of exponents is asymmetric about the mode at all depths, we use an infinitely divisible asymmetric model of the energy cascade, the log-Poisson model, to derive the functional dependence of the anomalous scaling with dissipation. Using this model we can interpret the vertical change of the linear slope as a change in the energy cascade.
The output from an eddy-resolved multi-layered circulation model is used to analyze the vertical structure of simulated deep-sea eddies in the Japan Basin of the Japan/East Sea constrained by bottom topography. We focus on Lagrangian analysis of anti cyclonic eddies, generated in the model in a typical year approximately at the place of the mooring and the hydrographic sections, where such eddies have been regularly observed in different years (1993--1997, 1999--2001). Using a quasi-3D computation of the finite-time Lyapunov exponents and displacements for a large number of synthetic tracers in each depth layer, we demonstrate how the simulated feature evolves of the eddy, that does not reach the surface in summer, into a one reaching the surface in fall. This finding is confirmed by computing deformation of the model layers across the simulated eddy in zonal and meridional directions and in the corresponding temperature cross sections. Computed Lagrangian tracking maps allow to trace the origin and fate of water masses in different layers of the eddy. The results of simulation are compared with observed temperature zonal and meridional cross sections of a real anticyclonic eddy to be studied at that place during the oceanographic Conductivity, Temperature, and Depth (CTD) hydrochemical survey in summer 1999. Both the simulated and observed eddies are shown to have the similar eddy core and the relief of layer interfaces and isotherms.
141 - S.V. Prants 2015
Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic a dvection in fluids, an analogue of dynamical Hamiltonian chaos in mechanics. The starting point for analysis is a velocity field obtained by this or that way. Being motivated by successful applications of that approach to simplified analytic models of geophysical fluid flows, researchers now work with satellite-derived velocity fields and outputs of sophisticated numerical models of ocean circulation. This review article gives an introduction to some of the basic concepts and methods used to study chaotic mixing and transport in the ocean and a brief overview of recent results with some practical applications of Lagrangian tools to monitor spreading of Fukushima-derived radionuclides in the ocean.
171 - M. Agostini , M. Bohmer , J. Bosma 2020
The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative with a vision towards constructing a multi-cubic kilometre neutrino telescope, to expand our observable window of the Universe to highest energies, installed within the deep Pacific Oc ean underwater infrastructure of Ocean Networks Canada.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا