Precoding-Based Network Alignment For Three Unicast Sessions


الملخص بالإنكليزية

We consider the problem of network coding across three unicast sessions over a directed acyclic graph, where each sender and the receiver is connected to the network via a single edge of unit capacity. We consider a network model in which the middle of the network only performs random linear network coding, and restrict our approaches to precoding-based linear schemes, where the senders use precoding matrices to encode source symbols. We adapt a precoding-based interference alignment technique, originally developed for the wireless interference channel, to construct a precoding-based linear scheme, which we refer to as as a {em precoding-based network alignment scheme (PBNA)}. A primary difference between this setting and the wireless interference channel is that the network topology can introduce dependencies between elements of the transfer matrix, which we refer to as coupling relations, and can potentially affect the achievable rate of PBNA. We identify all possible such coupling relations, and interpret these coupling relations in terms of network topology and present polynomial-time algorithms to check the presence of these coupling relations. Finally, we show that, depending on the coupling relations present in the network, the optimal symmetric rate achieved by precoding-based linear scheme can take only three possible values, all of which can be achieved by PBNA.

تحميل البحث