Proton removal reactions from a secondary 22N beam were utilized to populate unbound states in neutron-rich carbon isotopes. Neutrons were measured with the Modular Neutron Array (MoNA) in coincidence with carbon fragments. A resonance with a decay energy of 76(14) keV was observed in the system 18C+n corresponding to a state in 19C at an excitation energy of 653(95)keV. This resonance could correspond to the first 5/2+ state which was recently speculated to be unbound in order to describe 1n and 2n removal cross section measurements from 20C.
The neturon rich nucleus 13B was studied via the proton transfer reaction 4He(12Be,13B gamma) at 50AMeV. The known 4.83-MeV excited state was strongly populated and its spin and parity were assigned to 1/2+ by comparing the angular differential cross
section data with DWBA calculations. This low-lying 1/2+ state is interpreted as a proton intruder state and indicates a deformation of the nucleus.
Neutron-unbound resonant states of 11Be were populated in neutron knock-out reactions from 12Be and identified by 10Be-n coincidence measurements. A resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly excited unbound state
in 11Be at 3.949(2) MeV decaying to the 2+ excited state in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2) MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level, consistent with the detailed shell model calculations.
The ground state of $^{28}$F has been observed as an unbound resonance $2underline{2}0$ keV above the ground state of $^{27}$F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the $^{28}$F ground state is
primarily dominated by $sd$-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of $^{28}$F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in $^{27}$F at an excitation energy of $25underline{0}0 (2underline{2}0)$ keV.
Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new
2+ state at an excitation energy of 2.55 MeV was observed and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time Dependent Continuum Shell Model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.
Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the deca
y products. The development of two-neutron detection capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the possibility to search for unbound nuclei which decay by the emission of two neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.